Cartesian Thermal-Wave Fields in Three and Two Dimensions

  • Andreas Mandelis


Thermal-wave fields must be expressed in Cartesian coordinates when the relevant geometries are rectangular, even if the sources used for the creation of these fields possess circular symmetry (such as Gaussian laser beams). As a subset of rectangular geometries, laterally infinite structures can also be treated in the Cartesian coordinate system with relatively simple analytical integral solutions within the Green function formalism developed in Chapter 3. Other equivalent representations using the cylindrical coordinate system are investigated in Chapter 6. The starting point for various boundary-value problems worked out in this chapter is the thermal-wave field equation (2.2):
$$ T(r,\omega ) = \left( {\frac{\alpha }{k}} \right)G(r\left| {{r_0}} \right.;\omega )d{V_0} + \alpha \oint_{{S_0}} {\left[ {G(r\left| {r_o^s;\omega ){\nabla _0}({r^s},\omega ) - T({r^2},\omega )} \right.{\nabla _0}G(r\left| {r_o^s;\omega } \right.} \right]} \bullet d{S_0} $$
where S 0 is the surface surrounding the domain volume V 0, which includes the harmonic source Q(r 0,w). The thermal diffusivity, a, and conductivity, k, are assumed to be independent of the coordinate in V 0. dS 0 indicates an infinitesimal vector in the outward direction normal to the boundary surface S 0: dS 0 = ñ 0 dS 0, with ñ 0 being the outward unit vector, r 0 s + c is a source-coordinate point on S 0. This expression has been shown to offer a unique solution for the thermal-wave field (see Theorems I.1.a and I.1.b) under any inhomogeneous boundary condition of the Dirichlet, Neumann, or third-kind type.


Green Function Thermophysical Property Homogeneous Dirichlet Boundary Condition Homogeneous Neumann Boundary Condition Gaussian Laser Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. L. C. Aamodt and J. C. Murphy, Appl. Opt. 21, 111 (1982).ADSCrossRefGoogle Scholar
  2. D. P. Almond and P. M. Patel, Photothermal Science and Techniques (Chapman & Hall, London, 1996).Google Scholar
  3. C. A. Bennett and R. R. Patty, Appl. Opt. 21, 49 (1982).ADSCrossRefGoogle Scholar
  4. M. Bertolotti, G. L. Liakhou, R. Li Voti, S. Paoloni, and C. Sibilia, J. Appl. Phys. 85, 3540 (1999).ADSCrossRefGoogle Scholar
  5. J. A. Burt, Can. J. Phys. 64, 1053 (1986).ADSCrossRefGoogle Scholar
  6. Z. H. Chen and A. Mandelis, Rev. Sci. Instrum. 63, 2987 (1992).Google Scholar
  7. H. C. Chow, J. Appl. Phys. 51, 4053 (1980).ADSCrossRefGoogle Scholar
  8. L. D. Favro, P-K. Kuo, and R. L. Thomas, in Photoacoustic and Thermal Wave Phenomena in Semiconductors (A. Mandelis, ed.), (North-Holland, New York, 1987), Chap. 4.Google Scholar
  9. L. D. Favro, P-K. Kuo, and R. L. Thomas, in Non-Destructive Evaluation, Progress in Photoacoustic and Photothermal Science and Technology, Vol. II, (A. Mandelis, ed.), (Prentice-Hall, Englewood Cliffs, 1994), Chap. 2.Google Scholar
  10. D. Fournier and A. C. Boccara, in Photothermal Investigations of Solids and Fluids (J. A. Sell, ed.), (Academic, San Diego, 1989), Chap. 2, p. 54.Google Scholar
  11. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products (English Translation) (A. Jeffrey, ed.), (Academic, Orlando, FL, 1980).Google Scholar
  12. J. D. Jackson, Classical Electrodynamics, 2nd. Ed. (Wiley, New York, 1975).zbMATHGoogle Scholar
  13. W. B. Jackson, N. M. Amer, A. C. Boccara, and D. Fournier, Appl. Opt. 20, 1333 (1981).ADSCrossRefGoogle Scholar
  14. L. E. Kinsler and A. R. Frey, Fundamentals of Acoustics, 2nd Ed. (Wiley, New York, 1962).zbMATHGoogle Scholar
  15. F. A. McDonald, Am. J. Phys. 48, 41 (1980).ADSCrossRefGoogle Scholar
  16. F. A. McDonald, J. Appl. Phys. 52, 381 (1981).ADSCrossRefGoogle Scholar
  17. F. A. McDonald, J. Photoacoust. 1, 21 (1982).Google Scholar
  18. A. Mandelis, J. Opt. Soc. Am. A6, 298 (1989).Google Scholar
  19. A. Mandelis, J. Appl. Phys. 78, 647 (1995).ADSCrossRefGoogle Scholar
  20. P. M. Morse and K. U. Ingard, Theoretical Acoustics (McGraw-Hill, New York, 1968).Google Scholar
  21. J. C. Murphy and L. C. Aamodt, Appl. Phys. Lett. 38, 196 (1981).ADSCrossRefGoogle Scholar
  22. R. S. Quimby and W. M. Yen, Appl. Phys. Lett. 35, 43 (1979).ADSCrossRefGoogle Scholar
  23. R. S. Quimby and W. M. Yen, Appl. Phys. Lett. 51, 1252 (1980).Google Scholar
  24. A. Rosencwaig and A. Gersho, J. Appl. Phys. 47, 64 (1976).ADSCrossRefGoogle Scholar
  25. J. Shen and A. Mandelis, Rev. Sci. Instrum. 66, 4999 (1995).ADSCrossRefGoogle Scholar
  26. R. L. Thomas, J. J. Pouch, Y. H. Wong, L. D. Favro, and P.K. Kuo, J. Appl. Phys. 51, 1152(1980).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Andreas Mandelis
    • 1
  1. 1.Department of Mechanical and Industrial Engineering, Photothermal and Optoelectronic Diagnostics LaboratoryUniversity of TorontoTorontoCanada

Personalised recommendations