Carrier-Density-Wave Fields in Electronic Solids / Semiconductors

  • Andreas Mandelis


The preceding eight chapters have dealt in detail with the Green functions and mathematical methods of the thermal-wave field in the three most popular coordinate systems (Cartesian, cylindrical, and spherical). The present chapter introduces another important diffusion-wave field which is generated by modulated excitation of free-carrier plasmas in electronic media, notably semiconductors. The carrier-density-wave or carrier-diffusion-wave (CDW) (or even carrier-plasma-wave) field is fundamentally different from thermal waves by virtue of the structure of its wavenumber, Eq. (9.18). Here, one deals with coherent diffusion of particles (electrons or holes) in electronic media, rather than continuous energy dissipation; accordingly, the presentation of the intended material places emphasis on the physics of CDW generation. Nevertheless, the governing diffusion-wave equations are quite similar to thermal-wave formalisms. Therefore, many of the mathematical derivations in this chapter follow procedures familiar from earlier chapters. It was thus felt that only a condensed version of the derivation methematics was warranted here. Whenever the mathematical methods of earlier chapters are invoked, the reader is given adequate instructions on where to find the appropriate material. For these reasons, there is no clear separation between techniques to obtain Green functions and their applications to CDW boundary-value problems.


Green Function Carrier Density Electronic Medium Optical Absorption Coefficient Surface Recombination Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. I. N. Bandeira, H. Closs, and C. C. Ghizoni, J. Photoacoust. 1, 275 (1982).Google Scholar
  2. J. S. Blakemore, Semiconductor Statistics, 2nd Ed. (Dover, New York, 1987).Google Scholar
  3. A. C. Boccara and D. Fournier, in Photoacoustic and Thermal Wave Phenomena in Semiconductors (A. Mandelis, ed.), (North-Holland, New York, 1987), Chap. 12.Google Scholar
  4. R. Bracewell, The Fourier Transform and its Applications (McGraw-Hill, New York, 1965).zbMATHGoogle Scholar
  5. C. Christofides, F. Diakonos, A. Seas, C. Christou, M. Nestoros, and A. Mandelis, J. Appl. Phys. 80, 1715 (1996).ADSCrossRefGoogle Scholar
  6. C. Christofides, M. Nestoros, and A. Othonos, in Semiconductors and Electronic Materials, (Progress in Photothermal and Photoacoustic Science and Technology Vol. IV, A. Mandelis and P. Hess, eds.), (SPIE Press, Bellingham, WA, 2000), Chap. 4, p. 110.Google Scholar
  7. J. Crank, The Mathematics of Diffusion, 2nd Ed. (Clarendon Press, Oxford, 1975).Google Scholar
  8. D. Fournier and A. C. Boccara, in Photothermal Investigations of Solids and Fluids (J. A. Sell, ed.), (Academic, New York, 1989), Chap. 2, p. 35.Google Scholar
  9. D. Fournier, C. Boccara, A. Skumanich, and N. M. Amer, J. Appl. Phys. 59, 787 (1986).ADSCrossRefGoogle Scholar
  10. C. C. Ghizoni, M. A. A. Siqueira, H. Vargas, and L. C. M. Miranda, J. Appl. Phys. 32, 554 (1978).Google Scholar
  11. T. Ikari, A. Salnick, and A. Mandelis, J. Appl. Phys. 85, 7392 (1999).ADSCrossRefGoogle Scholar
  12. J. D. Jackson, Classical Electrodynamics, 2nd Ed. (Wiley, New York, 1975).zbMATHGoogle Scholar
  13. Y-S. Lu, S-Y. Zhang, and J-C. Cheng, J. Appl. Phys. 68, 1088 (1990).ADSCrossRefGoogle Scholar
  14. F. A. McDonald, D. Guidotti, and T. M. DelGiudice, Review of Progress in Quantitative NDE, Vol. 6B (D. O. Thompson and D. E. Chimenti, eds.), (Plenum, New York, 1987), p. 1361.Google Scholar
  15. J. P. McKelvey, Solid State and Semiconductor Physics (Harper & Row, New York, 1966).Google Scholar
  16. A. Mandelis, J. Appl. Phys. 66, 5572 (1989).ADSCrossRefGoogle Scholar
  17. A. Mandelis, J. Appl. Phys. 78, 647 (1995).ADSCrossRefGoogle Scholar
  18. A. Mandelis, Solid-State Electron. 42, 1 (1998).ADSCrossRefGoogle Scholar
  19. A. Mandelis (ed.), Photoacoustic and Thermal Wave Phenomena in Semiconductors (North-Holland, New York, 1987).Google Scholar
  20. A. Mandelis (ed.), Progress in Photothermal and Photoacoustic Science and Technology, Vol. II: Non-Destructive Evaluation (PTR Prentice Hall, Englewood Cliffs, NJ, 1994).Google Scholar
  21. A. Mandelis and E. K. M. Siu, Phys. Rev. B 34, 7209 (1986).ADSCrossRefGoogle Scholar
  22. A. Mandelis, A. A. Ward, and K. T. Lee, J. Appl. Phys. 66, 5584 (1989).ADSCrossRefGoogle Scholar
  23. A. Mandelis, A. Othonos, C. Christofides, and J. Boussey-Said, J. Appl. Phys. 80, 5332 (1996).ADSCrossRefGoogle Scholar
  24. A. Mandelis, M. Nestoros, and C. Christofides, Opt. Eng. 36, 459 (1997).ADSCrossRefGoogle Scholar
  25. J. R. Meyer, F. J. Bartolli, and M. R. Kruer, Phys. Rev. B 21, 1559 (1980).ADSCrossRefGoogle Scholar
  26. N. Mikoshiba and K. Tsubouchi, in Photoacoustic and Thermal Wave Phenomena in Semiconductors (A. Mandelis, ed.), (North-Holland, New York, 1987), Chap. 3, p. 53.Google Scholar
  27. L. C. M. Miranda, Appl. Opt. 21, 2923 (1982).ADSCrossRefGoogle Scholar
  28. K. L. Muratikov, Sov. Phys. Semicond. 18, 708 (1984) [English Translation].Google Scholar
  29. M. Nestoros, Y. Karmiotis, and C. Christofides, J. Appl. Phys. 82, 6220 (1997).ADSCrossRefGoogle Scholar
  30. J. Opsal, A. Rosencwaig, and D. L. Willenborg, Appl. Opt. 22, 3169 (1983).ADSCrossRefGoogle Scholar
  31. A. Othonos, C. Christofides, and A. Mandelis, Appl. Phys. Lett. 69, 821 (1996).ADSCrossRefGoogle Scholar
  32. V. A. Sablikov and V. B. Sandomirskii, Phys. Status Solidi (b) 120, 471 (1983a).ADSCrossRefGoogle Scholar
  33. V. A. Sablikov and V. B. Sandomirskii, Sov. Phys. Semicond. 17, 50 (1983b) [English Translation].Google Scholar
  34. A. Salnick, A. Mandelis, and C. Jean, Appl. Phys. Lett. 69, 2522 (1996).ADSCrossRefGoogle Scholar
  35. A. Salnick, C. Jean, and A. Mandelis, Solid State Electron. 41, 591 (1997).ADSCrossRefGoogle Scholar
  36. S. J. Sheard, Photothermal Radiometric Microscopy, Ph.D. Thesis, University College London (1987), Chap. 4.Google Scholar
  37. S. J. Sheard, M. G. Somekh, and T. Hiller, Mater. Sci. Eng. B 5, 101 (1990).CrossRefGoogle Scholar
  38. J. Shen and A. Mandelis, Rev. Sci. Instrum. 66, 4999 (1995).ADSCrossRefGoogle Scholar
  39. E. K. M. Siu and A. Mandelis, Phys. Rev. B 34, 7222 (1986).ADSCrossRefGoogle Scholar
  40. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941), p. 573.zbMATHGoogle Scholar
  41. T. Toyoda and K. Kato, Jpn. J. Appl. Phys. 35, 2912 (1996).ADSCrossRefGoogle Scholar
  42. R. E. Wagner and A. Mandelis, Semicond. Sci. Technol. 11, 289 (1996a).ADSCrossRefGoogle Scholar
  43. R. E. Wagner and A. Mandelis, Semicond. Sci. Technol. 11, 300 (1996b).ADSCrossRefGoogle Scholar
  44. S. Wurm, P. Alpern, D. Savignac, and R. Kakoschke, Appl. Phys. A 47, 147 (1988).ADSCrossRefGoogle Scholar
  45. E. Yang, Fundamentals of Semiconductor Devices (McGraw-Hill, New York, 1978).Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Andreas Mandelis
    • 1
  1. 1.Department of Mechanical and Industrial Engineering, Photothermal and Optoelectronic Diagnostics LaboratoryUniversity of TorontoTorontoCanada

Personalised recommendations