The Mechanisms of Morphine Dependence and It’s Withdrawal Syndrome: Study in Mutant Mice

Catecholamines and addiction
  • Yukihiro Noda
  • Toshitaka Nabeshima
Part of the Advances in Behavioral Biology book series (ABBI, volume 53)

Abstract

The catecholaminergic systems appear to mediate some of physical dependence of opiates.1 For example, Clonidine, a drug that decreases noradrenergic activity, prevents behavior induced by morphine withdrawal.2 An increase in the noradrenergic neuron firing rate in the locus coeruleus (LC) 3 and an increase in the turnover of noradrenaline (NA) have been reported during naloxone-precipitated morphine withdrawal.4

Keywords

Tyrosine Hydroxylase Locus Coeruleus Withdrawal Syndrome Morphine Withdrawal CREB Binding Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.F. Koob and RE. Bloom, Cellular and molecular mechanisms of drug dependence, Science. 242, 715–723 (1988).PubMedCrossRefGoogle Scholar
  2. 2.
    L.F. Tseng, H.H. Loh, and E.T. Wei, Effects of Clonidine on morphine withdrawal signs in the rat, Eur. J. Pharmacol. 30, 93–99 (1975).PubMedCrossRefGoogle Scholar
  3. 3.
    G.K. Aghajanian, Tolerance of locus coeruleus neurons to morphine and suppression of withdrawal response by Clonidine, Nature 267, 186–188 (1978).CrossRefGoogle Scholar
  4. 4.
    R. Laverty and R.H. Roth, Clonidine reverses the increased norepinephrine turnover during morphine withdrawal in rats, Brain Res. 182, 482–485 (1980).PubMedCrossRefGoogle Scholar
  5. 5.
    E.J. Nestler, Molecular mechanisms of drug addiction, J. Neurosci. 12, 2439–2450 (1992).PubMedGoogle Scholar
  6. 6.
    I. Matsuoka, R. Maldonado, N. Defer, F. Noel, J. Hanoune, and B.P. Roques, Chronic morphine administration causes region-specific increase of brain type VIII adenylyl cyclase mRNA, Eur. J. Pharmacol. 268, 215–221 (1994).PubMedCrossRefGoogle Scholar
  7. 7.
    E.J. Nestler, B.T. Hope, and K.L. Widnell, Drug addiction: a model for the molecular basis of neural plasticity, Neuron. 11, 995–1006 (1993).PubMedCrossRefGoogle Scholar
  8. 8.
    R.Z. Terwilliger, D. Beitner-Johnson, K.A. Sevarino, S.M. Crain, and E.J. Nestler, A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function, Brain Res. 548, 100–110 (1991).PubMedCrossRefGoogle Scholar
  9. 9.
    X. Guitart, M.A. Thompson, C.K. Mirante, M.E. Greenberg, and E.J. Nestler, Regulation of cyclic AMP response element-binding protein (CREB) phosphorylation by acute and chronic morphine in the rat locus coeruleus, J. Neurochem. 58, 1168–1171 (1992).PubMedCrossRefGoogle Scholar
  10. 10.
    K. Kobayashi, S. Morita, H. Sawada, T. Mizuguchi, K. Yamada, I. Nagatsu, T. Hata, Y. Watanabe, K. Keisuke, and T. Nagatsu, Targeted disruption of the tyrosine hydroxylase locus results in severe catecholamine depletion and perinatal lethality in mice, J. Biol. Chem. 270, 27235–27243 (1995).PubMedCrossRefGoogle Scholar
  11. 11.
    Y. Oike, A. Hata, T. Mamiya, T. Kaname, Y. Noda, M. Suzuki, H. Yasue, T. Nabeshima, K. Araki, and K. Yamamura, Truncated CBP protein leads to classical Rubinstein-Taybi syndrome phenotypes in mice: Implication of a dominant negative mechanism, Human Mol. Genet. 8, 387–396 (1999).CrossRefGoogle Scholar
  12. 12.
    S.L. Foote, F.E. Bloom, and G. Aston-Jones, Nucleus locus ceruleus: new evidence of anatomical and physiological specificity, Physiol. Rev. 63, 844–914 (1983).PubMedGoogle Scholar
  13. 13.
    A. Tempel and R.S. Zukin, Neuroanatomical patterns of the mu, delta, and kappa opioid receptors of rat brain as determined by quantitative in vitro autoradiography, Proc. Natl. Acad. Sci. USA. 84, 4308–4312 (1987).PubMedCrossRefGoogle Scholar
  14. 14.
    R.A. Wise, Opiate reward: sites and substrates, Neurosci. Biobehav. Rev. 13, 129–133 (1989).PubMedCrossRefGoogle Scholar
  15. 15.
    M.A. Bozarth and R.A. Wise, in: Problem of Drug Dependence, edited by L.S. Harris (NIDA Research Monograph 43, Washington DC, 1982), pp. 171–177.Google Scholar
  16. 16.
    G.F. Koob, T.L. Wall, and F.E. Bloom, Nucleus accumbens as a substrate for the aversive stimulus effects of opiate withdrawal, Psychopharmacology (Berl). 98, 530–534 (1989).CrossRefGoogle Scholar
  17. 17.
    L. Stinus, M. Le Moal, and G.F. Koob, Nucleus accumbens and amygdala are possible substrates for the aversive stimulus effects of opiate withdrawal, Neuroscience. 37, 767–773 (1990).PubMedCrossRefGoogle Scholar
  18. 18.
    R. Maldonado, A. Saiardi, O. Valverde, T.A. Samad, B.P. Roques, and E. Borrelli, Absence of opiate rewarding effects in mice lacking dopamine D2 receptors, Nature. 388, 586–589 (1997).PubMedCrossRefGoogle Scholar
  19. 19.
    E.J. Nestler, The brain on opiates, Neuron. 16, 897–900 (1996).PubMedCrossRefGoogle Scholar
  20. 20.
    M.R. Montminy, G.A. Gonzalez, and K.K. Yamamoto, Regulation of cAMP-inducible genes by CREB, Trends Neurosci. 13, 184–188 (1990).PubMedCrossRefGoogle Scholar
  21. 21.
    R. Maldonado, J.A. Blendy, E. Tzavara, P. Gass, B.P. Roques, and J. Hanoune, Reduction of morphine abstinence in mice with a mutant in the gene encoding CREB, Science. 273, 657–659 (1996).PubMedCrossRefGoogle Scholar
  22. 22.
    S.B. Lane-Ladd, J. Pineda, V.A. Boundy, T. Pfeuffer, J. Krupinski, G.K. Aghajanian, and E.J. Nestler, CREB (cAMP response element-binding protein) in the locus coeruleus: biochemical, physiological, and behavioral evidence for a role in opiate dependence, J. Neurosci. 17, 7890–7901 (1997).PubMedGoogle Scholar
  23. 23.
    M. Ptashne and A.A. Gann, Activators and targets, Nature. 346, 329–331 (1990).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Yukihiro Noda
  • Toshitaka Nabeshima
    • 1
  1. 1.Department of Neuropsychopharmacology and Hospital PharmacyNagoya University Graduate School of MedicineShowa-ku, NagoyaJapan

Personalised recommendations