Skip to main content

The Mechanisms of Morphine Dependence and It’s Withdrawal Syndrome: Study in Mutant Mice

Catecholamines and addiction

  • Chapter
Catecholamine Research

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 53))

  • 17 Accesses

Abstract

The catecholaminergic systems appear to mediate some of physical dependence of opiates.1 For example, Clonidine, a drug that decreases noradrenergic activity, prevents behavior induced by morphine withdrawal.2 An increase in the noradrenergic neuron firing rate in the locus coeruleus (LC) 3 and an increase in the turnover of noradrenaline (NA) have been reported during naloxone-precipitated morphine withdrawal.4

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.F. Koob and RE. Bloom, Cellular and molecular mechanisms of drug dependence, Science. 242, 715–723 (1988).

    Article  PubMed  CAS  Google Scholar 

  2. L.F. Tseng, H.H. Loh, and E.T. Wei, Effects of Clonidine on morphine withdrawal signs in the rat, Eur. J. Pharmacol. 30, 93–99 (1975).

    Article  PubMed  CAS  Google Scholar 

  3. G.K. Aghajanian, Tolerance of locus coeruleus neurons to morphine and suppression of withdrawal response by Clonidine, Nature 267, 186–188 (1978).

    Article  Google Scholar 

  4. R. Laverty and R.H. Roth, Clonidine reverses the increased norepinephrine turnover during morphine withdrawal in rats, Brain Res. 182, 482–485 (1980).

    Article  PubMed  CAS  Google Scholar 

  5. E.J. Nestler, Molecular mechanisms of drug addiction, J. Neurosci. 12, 2439–2450 (1992).

    PubMed  CAS  Google Scholar 

  6. I. Matsuoka, R. Maldonado, N. Defer, F. Noel, J. Hanoune, and B.P. Roques, Chronic morphine administration causes region-specific increase of brain type VIII adenylyl cyclase mRNA, Eur. J. Pharmacol. 268, 215–221 (1994).

    Article  PubMed  CAS  Google Scholar 

  7. E.J. Nestler, B.T. Hope, and K.L. Widnell, Drug addiction: a model for the molecular basis of neural plasticity, Neuron. 11, 995–1006 (1993).

    Article  PubMed  CAS  Google Scholar 

  8. R.Z. Terwilliger, D. Beitner-Johnson, K.A. Sevarino, S.M. Crain, and E.J. Nestler, A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function, Brain Res. 548, 100–110 (1991).

    Article  PubMed  CAS  Google Scholar 

  9. X. Guitart, M.A. Thompson, C.K. Mirante, M.E. Greenberg, and E.J. Nestler, Regulation of cyclic AMP response element-binding protein (CREB) phosphorylation by acute and chronic morphine in the rat locus coeruleus, J. Neurochem. 58, 1168–1171 (1992).

    Article  PubMed  CAS  Google Scholar 

  10. K. Kobayashi, S. Morita, H. Sawada, T. Mizuguchi, K. Yamada, I. Nagatsu, T. Hata, Y. Watanabe, K. Keisuke, and T. Nagatsu, Targeted disruption of the tyrosine hydroxylase locus results in severe catecholamine depletion and perinatal lethality in mice, J. Biol. Chem. 270, 27235–27243 (1995).

    Article  PubMed  CAS  Google Scholar 

  11. Y. Oike, A. Hata, T. Mamiya, T. Kaname, Y. Noda, M. Suzuki, H. Yasue, T. Nabeshima, K. Araki, and K. Yamamura, Truncated CBP protein leads to classical Rubinstein-Taybi syndrome phenotypes in mice: Implication of a dominant negative mechanism, Human Mol. Genet. 8, 387–396 (1999).

    Article  CAS  Google Scholar 

  12. S.L. Foote, F.E. Bloom, and G. Aston-Jones, Nucleus locus ceruleus: new evidence of anatomical and physiological specificity, Physiol. Rev. 63, 844–914 (1983).

    PubMed  CAS  Google Scholar 

  13. A. Tempel and R.S. Zukin, Neuroanatomical patterns of the mu, delta, and kappa opioid receptors of rat brain as determined by quantitative in vitro autoradiography, Proc. Natl. Acad. Sci. USA. 84, 4308–4312 (1987).

    Article  PubMed  CAS  Google Scholar 

  14. R.A. Wise, Opiate reward: sites and substrates, Neurosci. Biobehav. Rev. 13, 129–133 (1989).

    Article  PubMed  CAS  Google Scholar 

  15. M.A. Bozarth and R.A. Wise, in: Problem of Drug Dependence, edited by L.S. Harris (NIDA Research Monograph 43, Washington DC, 1982), pp. 171–177.

    Google Scholar 

  16. G.F. Koob, T.L. Wall, and F.E. Bloom, Nucleus accumbens as a substrate for the aversive stimulus effects of opiate withdrawal, Psychopharmacology (Berl). 98, 530–534 (1989).

    Article  CAS  Google Scholar 

  17. L. Stinus, M. Le Moal, and G.F. Koob, Nucleus accumbens and amygdala are possible substrates for the aversive stimulus effects of opiate withdrawal, Neuroscience. 37, 767–773 (1990).

    Article  PubMed  CAS  Google Scholar 

  18. R. Maldonado, A. Saiardi, O. Valverde, T.A. Samad, B.P. Roques, and E. Borrelli, Absence of opiate rewarding effects in mice lacking dopamine D2 receptors, Nature. 388, 586–589 (1997).

    Article  PubMed  CAS  Google Scholar 

  19. E.J. Nestler, The brain on opiates, Neuron. 16, 897–900 (1996).

    Article  PubMed  CAS  Google Scholar 

  20. M.R. Montminy, G.A. Gonzalez, and K.K. Yamamoto, Regulation of cAMP-inducible genes by CREB, Trends Neurosci. 13, 184–188 (1990).

    Article  PubMed  CAS  Google Scholar 

  21. R. Maldonado, J.A. Blendy, E. Tzavara, P. Gass, B.P. Roques, and J. Hanoune, Reduction of morphine abstinence in mice with a mutant in the gene encoding CREB, Science. 273, 657–659 (1996).

    Article  PubMed  CAS  Google Scholar 

  22. S.B. Lane-Ladd, J. Pineda, V.A. Boundy, T. Pfeuffer, J. Krupinski, G.K. Aghajanian, and E.J. Nestler, CREB (cAMP response element-binding protein) in the locus coeruleus: biochemical, physiological, and behavioral evidence for a role in opiate dependence, J. Neurosci. 17, 7890–7901 (1997).

    PubMed  CAS  Google Scholar 

  23. M. Ptashne and A.A. Gann, Activators and targets, Nature. 346, 329–331 (1990).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Noda, Y., Nabeshima, T. (2002). The Mechanisms of Morphine Dependence and It’s Withdrawal Syndrome: Study in Mutant Mice. In: Nagatsu, T., Nabeshima, T., McCarty, R., Goldstein, D.S. (eds) Catecholamine Research. Advances in Behavioral Biology, vol 53. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3538-3_94

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3538-3_94

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3388-1

  • Online ISBN: 978-1-4757-3538-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics