Vasoactive Hormones and Regulation of the Hypothalamic-Pituitary-Adrenal Axis

  • Greti Aguilera
  • Cristina Rabadan-Diehl
  • Alexander Kiss
  • Tomazs Ochedalski
Part of the Advances in Behavioral Biology book series (ABBI, volume 53)


Survival under stress situations requires coordinated behavioral, autonomic and hormonal responses in order to maintain homeostasis. Activation of the autonomic system, the hypothalamic pituitary adrenal (HPA) axis with increase in plasma glucocorticoids is essential for this adaptation (1). The secretion of glucocorticoids is regulated by the pituitary peptide adrenocorticotropic hormone (ACTH), which in turn is regulated by the hypothalamic peptides, corticotropin-releasing hormone (CRH) and vasopressin (VP) (2,3). It is clear that reciprocal interactions exist between the HPA axis and vasoactive hormones. For example, the hypothalamic peptides CRH and VP have recognized vasodilator and vasoconstrictor actions, respectively. Also, catecholamines and a number of vasoactive hormones including angiotensin II (Ang II), atrial natriuretic peptide, adrenomedullin and neuropeptide Y, are involved in the regulation of hypothalamic CRH (3). This discussion will address the interactions between some of these vasoactive hormones and different components of the HPA axis, and their physiological implications during stress adaptation.


Atrial Natriuretic Peptide Hypothalamic Pituitary Adrenal ACTH Secretion Pituitary Corticotroph Vasoactive Hormone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.P. Chrousos, and P.W. Gold, The concepts of stress and stress system disorders. JAMA 267, 1244–1252 (1992)PubMedCrossRefGoogle Scholar
  2. 2.
    G. Aguilera, Regulation of ACTH secretion during chronic stress. Front Neuroendocrinol. 15, 321–350 (1994)PubMedCrossRefGoogle Scholar
  3. 3.
    M.H. Whitnall, Regulation of the hypothalamic corticotropin-releasing hormone neurosecretory system. Prog. Neurobiol. 40, 573–629 (1993).PubMedCrossRefGoogle Scholar
  4. 4.
    A. Munck, P.M. Guyre and N.J. Holbrook Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocrine Rev.5, 25–44 (1984).CrossRefGoogle Scholar
  5. 5.
    D.L. Wong, B. Siddall and W. Wang, Hormonal control of rat adrenal phenylethanolamine N-methytransferase: enzyme activity, the final critical pathway. Neuropsycopharmacology 13, 223–234 (1995)CrossRefGoogle Scholar
  6. 6.
    J.A. Whitworth, Mechanisms of glucocorticoid induced hypertension. Kidney Int. 31, 1213–1224 (1987)PubMedCrossRefGoogle Scholar
  7. 7.
    K. Toba, M. Ohta, T. Kimura, K. Nagano, S. Ito and Y. Ouchi. Role of brain vasopressin in regulation of blood pressure. Prog. Brain. Res. 119, 337–49 (1998).PubMedCrossRefGoogle Scholar
  8. 8.
    G. Aguilera, C. Aguilera and Rabadan-Diehl. Vasopressinergic regulation of the hypothalamic-pituitary adrenal axis: implications for stress adaptation. Regulatory Peptides 96, 23–29 (2000)PubMedCrossRefGoogle Scholar
  9. 9.
    I. Assenmacher, G. Barbanel, S. Gaillet, L. Givalois, G. Ixart, F. Malaval, M. Mekaouche, P. Siaud, A. Szafarczyk. Central regulation of ACTH release in stress. Ann. N. Y. Acad. Sci. 771 41–54 (1995).PubMedCrossRefGoogle Scholar
  10. 10.
    M. Palkovits, R.L. Zaborsky, A. Feminger, E. Mezey, M.L.K. Fekete, J.P. Herman, B. Kanyicska and M. Szabo. Noradrenergic innervation of the rat hypothalamus: experimental biochemical and electron microscopic studies. Brain Res. 191, 161–171 (1990).CrossRefGoogle Scholar
  11. 11.
    K. Pacak, I. Armando, K. Fukuhara, R. Kvetnansky, M. Palkovits, I.J. Kopin and D.S. Goldstein. Noradrenergic activation in the paraventricular nucleus during acute and chronic stress in rats : An in vivo microdialysis study. Brain. Res. 589, 91–96 (1992).PubMedCrossRefGoogle Scholar
  12. 12.
    A. Kiss, G. Aguilera, Participation ofα1-adrenergic receptors in the secretion of hypothalamiccorticotropin releasing hormone during stress. Neuroendocrinology 56 153–160 (1992).PubMedCrossRefGoogle Scholar
  13. 13.
    A. Kiss and G. Aguilera. Role of alpha-1-adrenergic receptors in the regulation of CRH mRNA in the paraventricular nucleus of the hypothalamus during stress. Cell. Mol. Neurobiol. 20, 683–694 (2000).PubMedCrossRefGoogle Scholar
  14. 14.
    Saavedra JM. Brain and pituitary angiotensin. Endocr. Rev. 13, 329–80 (1992)PubMedGoogle Scholar
  15. 15.
    G. Aguilera, A. Kiss, X. Luo and B. Sunar-Akbasak. The renin-angiotensin system and the stress response. Ann. N.Y. Acad. Sci. 771, 173–186 (1995)PubMedCrossRefGoogle Scholar
  16. 16.
    D. Jezova, T. Ochedalski, A. Kiss, G. Aguilera. Modulation of the sympathetic nervous system and hypothalamic-pituitary-adrenal axis during acute immobilization stress by Centralangiotensin II receptor antagonism. J. Neuroendocrinol. 9, 689–697 (1997)Google Scholar
  17. 17.
    Lenkei Z., Corvol P., Llorens-Cortes C. Comparative expression of vasopressin and angiotensin type-1 receptor mRNA in rat hypothalamic nuclei: a double in situ hybridization study. Brain Res Mol Brain Res. 34, 135–42 (1995).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Greti Aguilera
    • 1
  • Cristina Rabadan-Diehl
    • 1
  • Alexander Kiss
    • 1
  • Tomazs Ochedalski
    • 1
  1. 1.Section on Endocrine Physiology, National Institute of Child Health and Human DevelopmentNational Institutes of HeathBethesdaUSA

Personalised recommendations