Neurotoxic Factors Targeting the Dopaminergic System

  • Michael A. Collins
Part of the Advances in Behavioral Biology book series (ABBI, volume 53)


The past several decades have seen an outburst of research on dopaminergic neurotoxins that might underlie Parkinson’s disease (PD). These are summarized as endogenous, primarily dopamine (DA)-derived, and exogenous (environmental) agents. In some cases, important metabolic steps for neurotoxin activation, brain accumulation and selective uptake, i.e., oxidation (nitrogen or sulfur), N-methylation (quaternization) and/or conjugation routes, are necessitated.


Organochlorine Pesticide Isoquinoline Alkaloid Organochlorine Insecticide Neurotoxic Factor Brain Accumulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Betarbet, R., Sherer, T.B., MacKenzie, G., Garcia-Osuna, M., Panov, A.V., and Greenamyre, J.T., 2000, Chronic systemic pesticide exposure reproduces features of Parkinson’s disease, Nature Neurosci. 3:1301–1306.PubMedCrossRefGoogle Scholar
  2. Bringmann, G., God, R., Fahr, S., Feineis, D., Fomadi, K., and Fomadi, F., 1999, Identification of the dopaminergic neurotoxin l-trichloromethyl-1,2,3,4-tetrahydro-beta-carboline in human blood after intake of the hypnotic chloral hydrate, Analyt. Biochem. 270:167–175.PubMedCrossRefGoogle Scholar
  3. Brooks, A.I., Chadwick, C.A., Gelbard, H.A., Cory-Slechta, D.A., and Federoff, H.J., 1999, Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss, Brain Res. 823:1–10.PubMedCrossRefGoogle Scholar
  4. Burke, W.J., 2000, Catecholamine-derived aldehyde neurotoxins, in: Neurotoxic Factors in PD and Related Disorders, A. Storch and M.A. Collins, eds., Kluwer-Plenum Publ., NYC, pp. 167–180.CrossRefGoogle Scholar
  5. Cohen, G. and Heikkila R.E., 1978, Mechanisms of action of hydroxylated phenylethylamine and indoleamine neurotoxins, Ann. NY. Acad. Sci. 305:74–84.PubMedCrossRefGoogle Scholar
  6. Collins, M.A., 1983, Mammalian alkaloids, in: Alkaloids XXI, A. Brossi, ed., Academic Press, NYC, pp. 321–350.Google Scholar
  7. Collins, M.A. and Neafsey, E.J , 2000, β-Carboline analogues of MPP+ as environmental neurotoxins, in: Neurotoxic Factors in Parkinson’s Disease and Related Disorders, A. Storch and M.A. Collins, eds., Kluwer-Plenum Publ., NYC, pp. 115–130.CrossRefGoogle Scholar
  8. Corrigan, F.M., Murray, L., Wyatt, C.L., and Shore R.F., 1998, Diorthosubstituted polychlorinated biphenyls in caudate nucleus in Parkinson’s disease, Exp. Neurol. 150:339–342.PubMedCrossRefGoogle Scholar
  9. Double, K.L., Zecca, L., Ben-Shachar, D., Youdim, M.B., Riederer, P., Gerlach, M., 2000, Neuromelanin may mediate neurotoxicity via its interaction with iron, in: Neurotoxic Factors in Parkinson’s Disease and Related Disorders, A. Storch and M.A. Collins, eds., Kluwer-Plenum Publ., NYC, pp.211–218.CrossRefGoogle Scholar
  10. Fleming, L., Mann, J.B., Bean, J., Briggle, T., and Sanchez-Ramos, J.R., 1994, Parkinson’s disease and brain levels of organochlorine pesticides, Ann. Neurol. 36:100–103.PubMedCrossRefGoogle Scholar
  11. Galzigna, L., De Iuliis, A., and Zanatta, L., 2000, Enzymatic dopamine peroxidation in substantia nigra of human brain, Clin. Chim. Acta 300:131–138.PubMedCrossRefGoogle Scholar
  12. Gearhart, D.A., Collins, M.A., Lee, J.M., and Neafsey, E.J., 2000, Increased β-carboline 9N-methyltransferase activity in the frontal cortex in Parkinson’s disease, Neurobiol. Dis. 7:201–211.PubMedCrossRefGoogle Scholar
  13. Grote, C., Clement, H.W., Wesemann, W., Bringmann, G., Feineis, D., Riederer, P., and Sontag, K.H., 1995, Biochemical lesions of the nigrostriatal system by TaClo (1-trichloromethyl-1,2,3,4- tetrahydro-β-carboline) and derivatives, J. Neural Trans. Suppl. 46:275–281.Google Scholar
  14. Jenner, P., 2001, Parkinson’s disease, pesticides and mitochondrial dysfunction, Trends Neurosci. 24:245–246.PubMedCrossRefGoogle Scholar
  15. Kirby, M.L., Barlow, R.L., and Bloomquist, J.R., 2001, Neurotoxicity of the organochlorine insecticide heptachlor to murine striatal dopaminergic pathways, Tax. Sci. 61:100–106.CrossRefGoogle Scholar
  16. Lamensdorf, I., Eisenhofer, G., Harvey-White, J., Hayakawa, Y., Kirk, K., and Kopin, I.J., 2000, Metabolic stress in PC 12 cells induces the formation of the endogenous dopaminergic neurotoxin, 3,4-dihydroxyphenyl-acetaldehyde, J. Neurosci. Res. 60:552–558.PubMedCrossRefGoogle Scholar
  17. Linert, W., Herlinger, E., Jameson, R.F., Kienzl, E., Jellinger, K., Youdim, M.B., 1996, Dopamine, 6-hydroxydopamine, iron, and dioxygen—their mutual interactions and possible implication in the development of Parkinson’s disease, Biochim. Biophys. Acta. 1316:160–8.PubMedCrossRefGoogle Scholar
  18. Maruyama, W., Strolin-Benedetti, M., and Naoi, M., 2000a, N-methyl(R)salsolinol and a neutral N-methyltransferase as pathogenic factors in Parkinson’s disease, Neurobiol. 8:55–68.Google Scholar
  19. Maruyama, W., Sango, K., Iwasa, K., Minami, C., Dostert, P., Kawai, M., Moriyasu, M., and Naoi, M., (2000b) Dopaminergic neurotoxins, 6,7-dihydroxy-l-(3′, 4′-dihydroxybenzyl)-isoquinolines, cause different types of cell death in SH-SY5Y cells: apoptosis was induced by oxidized papaverolines and necrosis by reduced tetrahydropapaverolines, Neurosci. Lett. 291:89–92.PubMedCrossRefGoogle Scholar
  20. Matsubara, K., Kobayashi, S., Kobayashi, Y., Yamashita, K., Koide, H., Hatta, M., Iwamoto, K., Tanaka, O., and Kimura, K., 1995, β-Carbolinium cations, endogenous MPP+ analogs, in the lumbar cerebrospinal fluid of patients with Parkinson’s disease, Neurol 45:2240–2245.CrossRefGoogle Scholar
  21. Matsubara, K., Gonda, T., Sawada, H., Uezono, T., Kobayashi, Y., Kawamura, T., Ohtaki, K., Kimura, K., and Akaike, A., 1998, Endogenously occurring beta-carboline induces parkinsonism in nonprimate animals: a possible causative protoxin in idiopathic Parkinson’s disease, J. Neurochem. 70:727–735.PubMedCrossRefGoogle Scholar
  22. Miller, G.W., Kirby, M.L., Levey, A.I., and Bloomquist, J.R., 1999, Heptachlor alters expression and function of dopamine transporters, Neurotoxicol. 20:631–637.Google Scholar
  23. Mihm, M.J., Schanbacher, B.L., Wallace, B.L., Wallace, L.J., Uretsky, N.J., and Bauer, J.A., 2001, Free 3-nitrotyrosine causes striatal neurodegeneration in vivo, J. Neurosci. 21: RC149 (1–5).PubMedGoogle Scholar
  24. Montine, T.J., Amarnath, V., Picklo, M.J., Sidell, K.R., Zhang, J., and Graham, D.G., 2000, Endogenous brain catechol thioethers in dopaminergic neurodegeneration, in: Neurotoxic Factors in Parkinson’s Disease and Related Disorders, A. Storch and M.A. Collins, eds., Kluwer-Plenum Publ., NYC, pp. 155–166.CrossRefGoogle Scholar
  25. Moser, A. and Kompf, D., 1992, Presence of methyl-6,7-dihydroxy-1,2,3,4- tetrahydroisoquinolines, derivatives of the neurotoxin isoquinoline, in parkinsonian lumbar CSF, Life Sci. 50:1885–1891.PubMedCrossRefGoogle Scholar
  26. Onta, S., 2000, Isoquinolines in Parkinson’s disease, in: Neurotoxic Factors in Parkinson’s Disease and Related Disorders, A. Storch and M.A. Collins, eds., Kluwer-Plenum Publ., NYC, pp. 91–100.Google Scholar
  27. Pezzella, A., D’Ischia, M., Napolitano, A., Misuraca, G., and Prota, G., 1997, Iron-mediated generation of the neurotoxin 6-HODA quinone by reaction of fatty acid hydroperoxides with dopamine: a possible contributory mechanism for neuronal degeneration in Parkinson’s disease, J. Med. Chem. 40:2211–2216.PubMedCrossRefGoogle Scholar
  28. Seegal, R.F., 1999, Polychlorinated biphenyls and methylmercury act synergistically to reduce rat brain dopamine content in vitro, Environ. Health Perspect. 107:879–885.Google Scholar
  29. Shen, X.M., Li, H., and Dryhurst, G., 2000, Oxidative metabolites of 5-S-cysteinyldopamine inhibit the α- ketoglutarate dehydrogenase complex: possible relevance to the pathogenesis of Parkinson’s disease, J. Neural Trans. 107:959–978.CrossRefGoogle Scholar
  30. Sherer, T.B., Trimmer, P.A., Borland, K., Parks, J.K., Bennett, J.P. Jr., and Turtle, J.B., 2001, Chronic reduction in complex I function alters calcium signaling in SH-SY5Y neuroblastoma cells. Brain Res. 891:94–105.PubMedCrossRefGoogle Scholar
  31. Song, S., Cardozo-Pelaez, F., and Sanchez-Ramos, J., 2000, Relationship to organochlorine pesticides to PD, in: Neurotoxic Factors in Parkinson’s Disease and Related Disorders, A. Storch and M.A. Collins, eds., Kluwer-Plenum Publ., NYC, pp. 237–245.Google Scholar
  32. Spencer, J.P., Jenner, P., Daniel, S.E., Lees, A.J., Marsden, D.C., and Halliwell, B. 1998, Conjugates of catecholamines with cysteine and GSH in Parkinson’s disease: possible mechanisms of formation involving reactive oxygen species, J. Neurochem. 71:2112–2122.PubMedCrossRefGoogle Scholar
  33. Surh, Y.J., 1999, Tetrahydropapaveroline, a dopamine-derived isoquinoline alkaloid, undergoes oxidation: implications for DNA damage and neuronal cell death, Europ. J. Clin. Invest. 29:650–651.PubMedCrossRefGoogle Scholar
  34. Thiruchelvam, M., Richfield, E.K., Baggs, R.B., Tank, A.W., and Cory-Slechta, D.A., 2000, The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: implications for Parkinson’s disease, J. Neurosci. 20:9207–9214.PubMedGoogle Scholar
  35. Wakabayashi, K., Totsuka, Y., Fukutome, K., Oguri, A., Ushiyama, H., and Sugimura, T., 1997, Human exposure to mutagenic/carcinogenic heterocyclic amines and comutagenic β-carbolines, Mut. Res. 376:253–259.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Michael A. Collins
    • 1
  1. 1.Dept. CBNALoyola University Medical SchoolMaywoodUSA

Personalised recommendations