Mutants and Variants of the Human Antidepressant-Sensitive Norepinephrine Transporter

  • Heinz Bönisch
  • Philipp Wiedemann
  • Fabian Runkel
  • Bruno Giros
  • Christine Roubert
  • Michael Brüss
Part of the Advances in Behavioral Biology book series (ABBI, volume 53)


The norepinephrine transporter (NET) is responsible for the rapid re-uptake of synaptically released NE. Substrate transport by neurotransmitter transporters (NTTs) is principially posible in both directions. In Na+- dependent transporters the normal transport direction is given by the Na+ gradient mainted by Na+/K+-ATPase. The ions Na+ and Cl- are cosubstrates of the NET and both ions are also needed for substrate (e.g., NE) transport and binding of NET inhibitors such as nisoxetine or the tricyclic antidepressant desipramine (DMI). In transfected cells overexpressing the NET, a channel-like mode of the NET has also been described.1 The NET transports the catecholamines NE, DA and epinephrine and amines like amphetamine, and the NET is a primary target of cocaine and of clinically important antidepressants (such as DMI, doxepine and reboxetine). The NET is not only expressed in noradrenergic neurons of the central and peripheral nervous system and in adrenal medullary cells but also in the placenta and in endothelial cells of small blood vessels of the lung where the NET is involved in the inactivation of circulating catecholamines.2


Splice Variant Monoamine Transporter Norepinephrine Transporter Gaba Transporter Transfected HEK293 Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.S. Sonders and S.G. Amara, Channels in transporters, Neurobiol. 6, 294–302 (1996)Google Scholar
  2. 2.
    H. Bönisch and M. Brüss, Catecholamine transporter of the plasma membrane, Ann. New York Acad. Sci. 733, 193–202 (1994).CrossRefGoogle Scholar
  3. 3.
    T. Pacholczyk, R.D. Blakely, and S.G. Amara, Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature 350, 350–354 (1991).PubMedCrossRefGoogle Scholar
  4. 4.
    S.L. Povlock and S.G. Amara, The structure and function of norepinephrine, dopamine, and serotonin transporters, in: Neurotransmitter Transporters: Structure, function, and regulation, edited by M.E.A. Reith (Humana Press, Totowa, New Jersey 1997), pp. 1–28CrossRefGoogle Scholar
  5. 5.
    M. Brüss, R. Hammermann, and H. Bönisch, Antipeptide antibodies confirm the topology of the human norepinephrine transporter, J. Biol. Chem. 270, 9197–9201 (1995)PubMedCrossRefGoogle Scholar
  6. 6.
    H. Bönisch, R. Hammermann, and M. Brüss, Role of protein kinase C and second messengers in regulation of the norepinephrine transporter, in: Catecholamines. Bridging basic science with clinical medicine, edited by D.S. Goldstein, G. Eisenhofer, and R. McCarty (Academic Press, San Diego, 1998) Adv. Pharmacol. 42, 149–164Google Scholar
  7. 7.
    M. Brüss, J. Kunz, B. Lingen, and H. Bönisch, Chromosomal mapping of the human gene for the tricyclic antidepressant-sensitive noradrenaline transporter, Hum. Genet. 91, 278 280 (1993)Google Scholar
  8. 8.
    P. Pörzgen, H. Bönisch, and M. Brüss, Molecular cloning and organization of the coding region of the human norepinephrine transporter gene, Biochem. Biophys. Res. Commun. 215, 1145–1150 (1995).PubMedCrossRefGoogle Scholar
  9. 9.
    P. Pörzgen, R. Hammermann, H. Bönisch, and M. Brüss, The human norepinephrine transporter gene contains multiple polyadenylation sites and two alternatively spliced C-terminal exons, Biochim. Biophys. Acta 1398, 365–370 (1998).PubMedCrossRefGoogle Scholar
  10. 10.
    G. Stöber, M. Nöthen, P. Pörzgen, M. Brüss, H. Bönisch, M. Knapp, H. Beckmann, and P. Propping, Systematic search for variation in the human norepinephrine transporter gene: Identification of five naturally occurring missense mutations and study of association with major psychiatric disorders. Am. J. Med. Genet. 67, 523–532 (1996).PubMedCrossRefGoogle Scholar
  11. 11.
    H. Bönisch, F. Runkel, C. Roubert, B. Giros, and M. Brüss, The human desipramine-sensitive noradrenaline transporter and the importance of defined amino acids for its function. J. Auton. Pharmacol. 19, 327–333 (2000)CrossRefGoogle Scholar
  12. 12.
    F. Runkel, M. Brüss, M.M. Nöthen, G. Stöber, P. Propping, and H. Bönisch, Pharmacological properties of naturally occurring variants of the human norepinephrine transporter. Pharmacogenetics 10, 1–9 (2000).CrossRefGoogle Scholar
  13. 13.
    C. Roubert, P. Cox, M. Brüss, M. Hamon, H. Bönisch, and B. Giros, Determination of residues in the norepinephrine transporter that are critical for tricyclic antidepressant affinity. J. Biol. Chem. 276, 8254–8260 (2001).PubMedCrossRefGoogle Scholar
  14. 14.
    S. Pantanowitz, A. Bendahan, and B.I. Kanner, Only one of the charged amino acids located in the transmembrane α-helices of the Y-aminobutyric acid transporter (subtype A) is essential for its activity. J. Biol. Chem. 268, 3222–3225 (1993).PubMedGoogle Scholar
  15. 15.
    N. Kleinberger-Doron, and B.I. Kanner, Identification of tryptophan residues critical for the function and targeting of the Y-aminobutyric acid transporter (subtype A). J. Biol. Chem. 269, 3063–3067 (1994).PubMedGoogle Scholar
  16. 16.
    G.I. Keshet, A. Bendahan, H. Su, S. Mager, H.A. Lester, and B.I. Kanner, Glutamate 101 is critical for the function of the sodium and chloride-coupled GABA transporter GAT-1. FEBS Lett. 371, 39–42 (1995).PubMedCrossRefGoogle Scholar
  17. 17.
    B. Giros, Y.-M. Wang, S. Suter, S.B. McLeskey, C. Pifl, and M.G. Caron, Delineation of discrete domains for substrate, cocaine, and tricyclic antidepressants using chimeric dopamine-norepinephrine transporters. J. Biol. Chem. 269, 15985–15988 (1994).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Heinz Bönisch
    • 1
  • Philipp Wiedemann
    • 1
  • Fabian Runkel
    • 1
  • Bruno Giros
    • 2
  • Christine Roubert
    • 2
  • Michael Brüss
    • 1
  1. 1.Institute of Pharmacology & ToxicologyUniversity of BonnBonnGermany
  2. 2.Neurobiology & Psychiatry, Faculty of MedicineINSERM U-513CreteilFrance

Personalised recommendations