Skip to main content

Molecular Basis for the Substrate Specificity of Human Catecholamine Sulfotransferase, SULT1A3

  • Chapter
Catecholamine Research

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 53))

Abstract

Sulfation is an important component of the body’s chemical defence mechanism, and provides a major route for the metabolism, detoxification and elimination of a host of xenobiotics (Coughtrie 1996). In addition to this role, sulfation also functions in the homeostasis of a number of important endogenous compounds, including iodothyronines (Visser 1996), steroid hormones (Roy 1992), oxysterols (Javitt et al. 2001) and catecholamines (Goldstein et al. 1999). These reactions are catalysed by members of the sulfotransferase (SULT) enzyme superfamily that transfer a sulfuryl moiety from the co-substrate 3′-phopshoadenosine 5′-phosphosulfate (PAPS). In humans, the SULT family numbers at least 11 members derived from at least 10 genes. The human SULTs can be subdivided into 3 different subfamilies based on amino acid sequence similarity and functional activity, and the largest family, SULT1 or phenol SULT, currently comprises 7 members (Coughtrie et al. 2001). Humans (and other primates) differ from most animal species in that they have significant levels of circulating catecholamine sulfates; for example up to 98% of circulating dopamine is in its sulfated form (Goldstein et al. 1999). It is believed that the gastrointestinal tract is the major source of these circulating catecholamine sulfates (Goldstein et al. 1999), and indeed significant increases in plasma dopamine sulfate can be observed after ingestion of bananas (Davidson et al. 1981) which are rich in dopamine (Kanazawa et al. 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bidwell L. M., McManus M. E., Gaedigk A., Kakuta Y. et al., 1999, Crystal structure of human catecholamine sulfotransferase. J Mol Biol, 293: 521–530.

    Article  PubMed  CAS  Google Scholar 

  • Brix L. A., Duggleby R. G., Gaedigk A., and McManus M. E., 1999, Structural characterization of human aryl sulphotransferases. Biochem J, 337: 337–343.

    Article  PubMed  CAS  Google Scholar 

  • Coughtrie M. W. H., 1996, Sulphation catalysed by the human cytosolic sulphotransferases — chemical defence or molecular terrorism? Hum Exp Toxicol, 15: 547–555.

    Article  PubMed  CAS  Google Scholar 

  • Coughtrie M. W. H., and Johnston L. E., 2001, Interactions between dietary chemicals and human sulfotransferases — Molecular mechanisms and clinical significance. Drug Metab Dispos, 29: 522–528.

    PubMed  CAS  Google Scholar 

  • Dajani R., Cleasby A., Neu M., Wonacott A. J. et ai, 1999, X-ray crystal structure of human dopamine sulfotransferase, SULT1A3: Molecular modelling and QSAR analysis demonstrate a molecular basis for sulfotransferase substrate specificity. J Biol Chem, 274: 37862–37868.

    Article  PubMed  CAS  Google Scholar 

  • Dajani R., Hood A. M., and Coughtrie M. W. H., 1998, A single amino acid, Glu146, governs the substrate specificity of a human dopamine sulfotransferase, SULT1A3. Mol Pharmacol, 54: 942–948.

    PubMed  CAS  Google Scholar 

  • Davidson L., Vandongen R., and Beilin L. J., 1981, Effect of eating bananas on plasma free and sulfate-conjugated catecholamines. Life Sci., 29: 1773–1778.

    Article  PubMed  CAS  Google Scholar 

  • Dooley T. P., 1998, Molecular biology of the human phenol sulfotransferase gene family. Journal Of Experimental Zoology, 282: 223–230.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein D. S., Swoboda K. J., Miles J. M., Coppack S. W. et ai, 1999, Sources and physiological significance of plasma dopamine sulfate. J Clin Endocrinol Metab, 84: 2523–2531.

    Article  PubMed  CAS  Google Scholar 

  • Javitt N. B., Lee Y. C., Shimizu C., Fuda H. et al., 2001, Cholesterol and hydroxycholesterol sulfotransferases: Identification, distinction from dehydroepiandrosterone sulfotransferase, and differential tissue expression. Endocrinology, 142: 2978–2984.

    Article  PubMed  CAS  Google Scholar 

  • Kakuta Y., Pedersen L. G., Carter C. W., Negishi M. et ai, 1997, Crystal structure of estrogen sulphotransferase. Nature Struct Biol, 4: 904–908.

    Article  PubMed  CAS  Google Scholar 

  • Kakuta Y., Petrotchenko E. V., Pedersen L. C., and Negishi M., 1998, The sulfuryl transfer mechanism: crystal structure of a vanadate complex of estrogen sulfotransferase and mutational analysis. J Biol Chem, 273: 27325–27330.

    Article  PubMed  CAS  Google Scholar 

  • Kanazawa K., and Sakakibara H., 2000, High content of dopamine, a strong antioxidant, in Cavendish banana. J Agr Food Chem, 48: 844–848.

    Article  CAS  Google Scholar 

  • Rein G., Glover V., and Sandler M., 1982, Mutiple forms of phenolsulphotransferase in human tissues. Selective inhibition by dichloronitrophenol. Biochem Pharmacol, 31: 1893–1897.

    Article  PubMed  CAS  Google Scholar 

  • Richard K., Hume R., Kaptein E., Stanley E. L. et ai, 2001, Sulfation of thyroid hormone and dopamine during human development — ontogeny of phenol sulfotransferases and arylsulfatase in liver, lung and brain. J Clin Endocrinol Metab, 86: 2734–2742.

    Article  PubMed  CAS  Google Scholar 

  • Roy A. K., 1992, Regulation of steroid hormone action in target cells by specific hormone-inactivating enzymes. Proc Soc Exp Biol Med, 199: 265–272.

    PubMed  CAS  Google Scholar 

  • Rubin G. L., Sharp S., Jones A. L., Glatt H. et ai, 1996, Design, production and characterisation of antibodies discriminating between the phenol- and monoamine-sulphating forms of human phenol sulphotransferase. Xenobiotica, 26: 1113–1119.

    Article  PubMed  CAS  Google Scholar 

  • Visser T. J., 1996, Pathways of thyroid hormone metabolism. Acta Med Austriaca, 1/2: 10–16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Coughtrie, M.W.H., Taskinen, J., Hood, A.M. (2002). Molecular Basis for the Substrate Specificity of Human Catecholamine Sulfotransferase, SULT1A3. In: Nagatsu, T., Nabeshima, T., McCarty, R., Goldstein, D.S. (eds) Catecholamine Research. Advances in Behavioral Biology, vol 53. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3538-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3538-3_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3388-1

  • Online ISBN: 978-1-4757-3538-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics