Skip to main content

In Vivo and in Vitro Functions of Two Types of Mao

  • Chapter

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 53))

Summary

Monoamine oxidase (MAO) A and B have selective substrate and inhibitor specificity. MAO A and B knock-out mice exhibit distinct neurotransmitter metabolism and behavior, suggesting that these two isoenzymes have distinct functions in vivo. These two isoenzymes are coded by different cDNAs with 70% amino acid identity. Interestingly, Isoleucine 335 in MAO A and the corresponding amino acid in MAO B, tyrosine 326, determine the substrate and inhibitor selectivity in vitro.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.C. Shih, Molecular basis of human MAO A and B. Neuropsychopharmacology 4, 1–7 (1991).

    PubMed  CAS  Google Scholar 

  2. J.P. Johnston, Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem. Pharmacol. 17, 1285–1297 (1968).

    Article  PubMed  CAS  Google Scholar 

  3. J. Knoll and K. Magyar, Some puzzling pharmacological effects of monoamine oxidase inhibitors. Adv. Biochem. Psychopharmacol. 5, 393–408 (1972).

    PubMed  CAS  Google Scholar 

  4. J.C. Shih, K. Chen, and M. Ridd, Monoamine oxidases: from gene to behavior. Ann. Rev. Neuroscience 22, 197–217 (1999).

    Article  CAS  Google Scholar 

  5. A.R. Green and M.B.H. Youdim, Effects of monoamine oxidase inhibition by clorgyline, deprenyl or tranycypromine on 5-hydroxy-deprenyl or tranycypromine on 5-hydroxytryptamine concentrations in rat brain and hyperactivity following subsequent tryptophan administration. Br. J. Pharmacol. 55, 415–422 (1975).

    Article  PubMed  CAS  Google Scholar 

  6. M. Sano, C. Ernesto, R.G. Thomas, M.R. Klauber, K. Schafer, M. Grundman, P. Woodbury, J. Growdon, C.W. Cotman, E. Pfeiffer, L.S. Schneider and L.J. Thal, A controlled trial of selegiline, α-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. New. Eng. J. 336, 1216–1222 (1997).

    Article  CAS  Google Scholar 

  7. A.W.J. Bach, N.C. Lan, D.L. Johnson, C.W. Abell, M.E. Bemkenek, S.-W. Kwan, P.H. Seeburg and J.C. Shih, cDNA cloning of human liver monoamine oxidase A and B: Molecular basis of differences in enzymatic properties. Proc. Natl. Acad. Sci. 85, 4934–4938 (1988).

    Article  PubMed  CAS  Google Scholar 

  8. N.C. Lan, C. Heinzmann, A. Gal, I. Klisak, U. Orth, et. al., Human monoamine oxidase A and B genes map to Xp 11.23 and are deleted in a patient with Norrie disease. Genomics 4, 552–559 (1989).

    Article  PubMed  CAS  Google Scholar 

  9. J. Grimsby, K. Chen, L.J. Wang, N.C. Lan and J.C. Shih, Human monoamine oxidase A and B gene exhibit identical exon-intron organization. Proc. Natl. Acad. Sci. USA 88, 3637–3641 (1991).

    Article  PubMed  CAS  Google Scholar 

  10. O. Cases, I. Seif, J. Grimsby, P. Gaspar, K. Chen, et. al., Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAO A. Science 268, 1763–1766 (1995).

    Article  PubMed  CAS  Google Scholar 

  11. H.G. Brunner, M.R. Nelen, P. Van Zandvoort, N.G.G.M. Abeling, A.H. Van Gennip, et. al., X-linked borderline mental retardation with prominent behavioral disturbance: phenotype, genetic localization, and evidence for disturbed monoamine metabolism. Am. J. Hum. Genet. 52, 1032–1039 (1994).

    Google Scholar 

  12. H.G. Brunner, M. Nelen, X.O. Breakefield, H.H. Ropers and B.A. Van Oost, Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 262, 578–580 (1993).

    Article  PubMed  CAS  Google Scholar 

  13. J. Grimsby, M. Toth, K. Chen, T. Kumazawa, L. Klaidman, et. al., Increased stress response and β- phenylethylamine in MAO B-deficient mice. Nature Genet 17, 1–5 (1997).

    Article  Google Scholar 

  14. A.M. Cesura, J. Gottowik, H.-W. Lahm, G. Lang, R. Imhof, P. Malherbe, U. Röthlisberger and M. Da Prada, Investigation on the structure of the active site of monoamine oxidase-B by affinity labeling with the selective inhibitor lazabemide and by site-directed mutagenesis. Eur. J. Biochem. 236, 996–1002 (1996).

    Article  PubMed  CAS  Google Scholar 

  15. K. Chen, H.-F. Wu, and J.C. Shih, Influence of C Terminus on monoamine oxidase A and B catalytic activity. J. Neurochem. 66, 797–803 (1996).

    Article  PubMed  CAS  Google Scholar 

  16. J. Gottowik, A.M. Cesura, P. Malherbe, G. Lang, and M. Da Prada, Characterization of wild-type and mutant forms of human monoamine oxidase A and B expressed in a mammalian cell line. FEBS Lett. 317, 152–156 (1993).

    Article  PubMed  CAS  Google Scholar 

  17. J. Gottowik, P. Malherbe, G. Jang, M. Da Prada, and A.M. Cesura, Structure/function relationships of mitochondrial monoamine oxidase A and B chimeric forms. Eur. J. Biochem. 230, 934–942 (1995).

    Article  PubMed  CAS  Google Scholar 

  18. Y. Tsugeno, I. Hirashiki, F. Ogata, and A. Ito, Regions of the molecule responsible for substrate specificity of monoamine oxidase A and B: a chimeric enzyme analysis. J. Biochem. (Tokyo), 118, 974–980 (1995).

    Article  CAS  Google Scholar 

  19. K. Chen, H.-F. Wu, J. Grimsby and J.C. Shih, Cloning of a novel monoamine oxidase (MAO) cDNA from trout liver. Mol. Pharm. 46:1226–1233 (1994).

    CAS  Google Scholar 

  20. J. Grimsby, M. Zentner and J.C. Shih: Identification of a region important for human monoamine oxidase B substrate and inhibitor selectivity. Life Sci. 58:777–787 (1996).

    Article  PubMed  CAS  Google Scholar 

  21. H.-F. Wu, K. Chen, and J.C. Shih, Site-directed mutagenesis of monoamine oxidase A and B. Mol. Pharmacol. 43, 888–893 (1993).

    PubMed  CAS  Google Scholar 

  22. R.M. Geha, K. Chen, and J.C. Shih, Phe208 and He199 in human monoamine oxidase A and B do not determine substrate and inhibitor specificities as in rat. J. Neurochem. 75, 1304–1309 (2000).

    Article  PubMed  CAS  Google Scholar 

  23. Y. Tsugeno and A. Ito, A key amino acid responsible for substrate selectivity of monoamine oxidase A and B. J. Biol. Chem. 272, 14033–14036 (1997).

    Article  PubMed  CAS  Google Scholar 

  24. R.M. Geha, I. Rebrin, K. Chen and J.C. Shih, Substrate and inhibitor specificities of human monoamine oxidase A and B are influenced by a single amino acid. J. Biol. Chem., 276, 9877–9882 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shih, J.C., Chen, K. (2002). In Vivo and in Vitro Functions of Two Types of Mao. In: Nagatsu, T., Nabeshima, T., McCarty, R., Goldstein, D.S. (eds) Catecholamine Research. Advances in Behavioral Biology, vol 53. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3538-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3538-3_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3388-1

  • Online ISBN: 978-1-4757-3538-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics