GTP Cyclohydrolase I Gene Expression and Catecholamine Synthesis

  • Gregory Kapatos
  • Kei Hirayama
Part of the Advances in Behavioral Biology book series (ABBI, volume 53)


The reduced pteridine 5,6,7,8-tetrahydrobiopterin (BH4) is the essential cofactor for the family of pterin-dependent monooxygenases that includes tyrosine (TH), tryptophan (TPH) and phenylalanine hydroxylase, the rate-limiting enzymes in the synthesis of the monoamine (MA) neurotransmitters dopamine (DA), norepinephrine and serotonin (5-HT) and the detoxification of L-phenylalanine, respectively (Kaufman, 1974). BH4 serves as an electron donor in these enzyme reactions. GTP cyclohydrolase I (GTPCH) catalyzes the first and rate-limiting step in de novo BH4 biosynthesis, the formation of the first pterin intermediate, D-erythro-7,8-dihydroneopterin triphosphate, from GTP (Nichol et al., 1985). Within the brain GTPCH mRNA (Hirayama et al., 1993) and protein (Nagatsu et. al., 1997; Dassesse et. al., 1997) can only be detected within MA neuronal cell bodies. GTPCH protein is transported to the MA nerve terminals, indicating that BH4 is synthesized at its primary site of action (Levine et al., 1981). The rate of BH4 synthesis actually exceeds that of the MA neurotransmitters, with 25% of the intracellular pool being synthesized each hour (Kapatos, 1990). BH4 levels within DA nerve terminals are subsaturating for TH (Kettler et al., 1974) while BH4 levels within 5-HT nerve endings saturate TPH (Wolf et al., 1991). This distinction based upon neurotransmitter phenotype may be important clinically (see below) and presumably is due to the low levels of GTPCH mRNA (Lentz and Kapatos, 1996) and GTPCH protein (Hirayama and Kapatos, 1998) that are expressed within nigrostriatal DA neurons.


Vasoactive Intestinal Peptide Superior Cervical Ganglion Neurotransmitter Phenotype Tyrosine Hydroxylation Basal Ganglion Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abou-Donia M.M., and Viveros O.H. 1981, Tetrahydrobiopterin increases in adrenal medulla and cortex: a factor in the regulation of tyrosine hydroxylase Proc. Natl. Acad. Sci. USA 78, 2703–2706.PubMedCrossRefGoogle Scholar
  2. Abou-Donia M.M., Wilson S.P., Zimmerman T.P., Nichol C.A., and Viveros O.H. 1986, Regulation of GTP cyclohydrolase and tetrahydrobiopterin levels and the role of the cofactor in tyrosine hydroxylation in primary cultures of adrenomedullary chromaffin cells. J. Neurochem. 46, 1190–1199PubMedCrossRefGoogle Scholar
  3. Anastasiadis P.Z., Bezin L., Gordon L.J., Imerman B., Blitz J., and Levine R.A. 1998, Vasoactive intestinal peptide induces both tyrosine hydroxylase activity and tetrahydrobiopterin biosynthesis in PC 12 cells. Neuroscience 86, 179–189.PubMedCrossRefGoogle Scholar
  4. Dassesse D., Hemmens B., Cuvelier L., and Resibois A. 1997, GTP cyclohydrolase I like immunoreactivity in rat brain. Brain Res. 777, 187–201.PubMedCrossRefGoogle Scholar
  5. De Jong A.P.J.M., Haan E.A., Manson J.L, Wise G.A., Ouvrier R.A., and Wadman S.K. 1989, Kinetic study of catecholamine metabolism in hereditary progressive dystonia Neuropediatrics 20, 3–11.PubMedCrossRefGoogle Scholar
  6. Furukawa Y., Kish S.J., Bebin M, Jacobson R.D., Fryburg J., Wilson W.G., Shimadzu M, Hyland K., and Trugman J.M. 1998, Dystonia with motor delay in compound heterozygotes for GTP cyclohydrolase I gene mutations. Ann. Neurol. 44, 10–16.PubMedCrossRefGoogle Scholar
  7. Furukawa Y., Lang A.E., Trugman J.M., Bird T.D., Hunter A., Sadeh M., Tagawa T., St. George-Syslop P.H., Guttman M., Morris L.W., Hornykiewicz O., Shimadzu M., and Kish S.J. 1998, Gender-related penetrance and de novo GTP-cyclohydrolase I gene mutations in dopa-responsive dystonia. Neurology 50, 1015–1020.PubMedCrossRefGoogle Scholar
  8. Hirayama, K., Lentz, S.I., and Kapatos, G. 1993, Tetrahydrobiopterin cofactor biosynthesis: GTP cyclohydrolase I rnRNA expression in rat brain and superior cervical ganglia. J. Neurochem. 61, 1006–1014.PubMedCrossRefGoogle Scholar
  9. Hirayama K. and Kapatos G. 1995, Regulation of GTP cyclohydrolase I gene expression and tetrahydrobioptenn content by nerve growth factor in cultures of superior cervical ganglia. Neurochem. Int. 27, 157–162.PubMedCrossRefGoogle Scholar
  10. Hirayama K., and Kapatos G. 1998, Nigrostriatal dopamine neurons express low levels of GTP cyclohydrolase I protein. J. Neurochem. 70, 164–170.PubMedCrossRefGoogle Scholar
  11. Ichinose H., Ohye T., Takahashi E., Seki N., Hori T., Segawa M., Nomra Y., Endo K., Tanaka H., Tsuji S., Fujita K., and Nagatsu T. 1994, Hereditary progressive dystonia with marked diurnal fluctuation caused by mutations in GTP cyclohydrolase I gene. Nature Genetics 8, 236–242.PubMedCrossRefGoogle Scholar
  12. Ichinose H., Ohye T., Matsuda Y., Hori T., Blau N., Burlina A., Rouse B., Matalon R., Fujita K., and Nagatsu T. 1995, Characterization of mouse and human GTP cyclohydrolase genes. Mutations in patients with GTP cyclohydrolase I deficiency. J. Biol. Chem. 270, 10061–10071.CrossRefGoogle Scholar
  13. Kapatos, G., Kaufman, S., Weller, J.L., and Klein, D.C. 1981, Biosynthesis of biopterin: Adrenergic cyclic adenosine monophosphate-dependent inhibition in the pineal gland. Science 213, 1129–1131.PubMedCrossRefGoogle Scholar
  14. Kapatos G. 1990, Tetrahydrobiopterin synthesis rate and turnover time in neuronal cultures from rat mesencephalon and hypothalamus. J. Neurochem. 55, 1995–1201.CrossRefGoogle Scholar
  15. Kapatos, G., Stegenga, S.L., and Hirayama, K. 2000, Identification and characterization of basal and cyclic AMP response elements in the promoter of the rat GTP cyclohydrolase I gene. J. Biol. Chem. 275:5947–5957.PubMedCrossRefGoogle Scholar
  16. Kaufman, S. 1974, Properties of the pterin-dependent hydroxylases. In: Aromatic Amino Acids in the Brain, CIBA Foundation Symposia, Vol. 22, pp. 85–115. Elsevier, Amsterdam.Google Scholar
  17. Kettler R., Bartholini G., and Pletscher A. 1974, In vivo enhancement of tyrosine hydroxylation in rat striatum by tetrahydrobiopterin. Nature 249, 476–478.PubMedCrossRefGoogle Scholar
  18. Lentz S.I., and Kapatos G. 1996, Tetrahydrobiopterin biosynthesis in the rat brain: heterogeneity of GTP cyclohydrolase I mRNA expression in monoamine-containing neurons. Neurochem. Int. 28, 569–582.PubMedCrossRefGoogle Scholar
  19. Levine R.A., Miller L.P., and Lovenberg W. 1981, Tetrahydrobiopterin in striatum: Localization to dopamine nerve terminals and role in catecholamine synthesis. Science 214, 919–921.PubMedCrossRefGoogle Scholar
  20. LeWitt P.A., Miller L.P., Levine R.A., Lovenberg W., Newman R.P., Papavasiliou A., Rayes A., Eldridge R., and Burns R.S. 1986, Tetrahydrobiopterin in dystonia: identification of abnormal metabolism and therapeutic trials. Neurol. 36, 760–764.CrossRefGoogle Scholar
  21. Nagatsu I., Ichinose H., Sakai M., Titani K., Suzuki M., Nagatsu T. 1995, Immunocytochemical localization of GTP cyclohydrolase I in brain, adrenal gland and liver of mice. J. Neural Transm. 102, 175–188.CrossRefGoogle Scholar
  22. Nichol C.A., Smith G.K., and Duch D.S. 1985, Biosynthesis and metabolism of tetrahydrobiopterin and molybdopterin. Ann. Rev. Biochem. 54, 729–764.PubMedCrossRefGoogle Scholar
  23. Niederwieser A. and Curtius H.C. 1987, Tetrahydrobiopterin: biosynthetic pathway and deficiency. Enzyme 38, 302–311.PubMedGoogle Scholar
  24. Rajput, A.H., Gibb, W.R.G., Zhong, X.H., Shannak, K.S., Kish, S., Chang, L.G. and Hornykiewicz, O. 1994, Dopa-responsive dystonia: pathological and biochemical observations in a case. Ann. Neurol. 35, 396–402.PubMedCrossRefGoogle Scholar
  25. Segawa M., Hosaka A., Miyazawa F., Nomura Y., and Imai H. 1971, Childhood basal ganglia disease with remarkable response to 1-Dopa, hereditary basal ganglia disease with marked diurnal fluctuation. Shinryo 24, 667–672.Google Scholar
  26. Segawa M., Hosaka A., Miyagawa F., Nomura Y., Imai H. 1976, Hereditary progressive dystonia with marked diurnal fluctuation. In: Advances in Neurology. (Eldridge R., and Fahn S., eds) Vol. 14, 215–233.Google Scholar
  27. Serova L., Nankova B., Rivkin M., Kvetnansky R., and Sabban E.L. 1997, Glucocorticoids elevate GTP cyclohydrolase I mRNA levels in vivo and in PC 12 cells. Mol. Br. Res. 48, 251–258.CrossRefGoogle Scholar
  28. Shimoji M., Hirayama K., Hyland K., and Kapatos G. 1999, GTP cyclohydrolase I gene expression in the brains of male and female hph-1 mice. J. Neurochem. 72, 757–764.PubMedCrossRefGoogle Scholar
  29. Stegenga S.L., Hirayama K., and Kapatos G. 1996, Regulation of GTP cyclohydrolase I gene expression and tetrahydrobiopterin content in cultured sympathetic neurons by leukemia inhibitory factor and ciliary neurotrophic factor. J. Neurochem. 66, 2541–2545.PubMedCrossRefGoogle Scholar
  30. Togari, A., Ichinose, H., Matsumoto, S., Fujita, K. and Nagatsu, T. 1992, Multiple mRNA forms of human GTP cyclohydrolase I. Biochem. Biophys. Res. Com. 187, 359–365.PubMedCrossRefGoogle Scholar
  31. Witter K., Werner T., Blusch J.H., Schneider E.M., Riess O., Ziegler I., Rodl W., Bacher A., and Gutlich M. 1996, Cloning, sequencing and functional studies of the gene encoding human GTP cyclohydrolase I. Gene 171, 285–290.CrossRefGoogle Scholar
  32. Wolf W.A., Ziaja E., Arthur R.A.Jr., Anastasiadis P.Z., Levine R.A., and Kuhn D.M. 1991, Effect of tetrahydrobiopterin on serotonin synthesis, release, and metabolism in superfused hippocampal slices. J. Neurochem. 57, 1191–1197.PubMedCrossRefGoogle Scholar
  33. Zhu, M., Hirayama, K., and Kapatos, G. 1994, Regulation of tetrahydrobiopterin biosynthesis in cultured dopamine neurons by depolarization and cAMP. J. Biol. Chem. 269, 11825–11829.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Gregory Kapatos
    • 1
  • Kei Hirayama
    • 1
  1. 1.Department of Psychiatry and Behavioral Neurosciences and Center for Molecular Medicine and GeneticsWayne State University School of MedicineDetroitUSA

Personalised recommendations