Catecholamine — Neuropeptide Interactions

  • Tomas Hökfelt
  • Zhi-Qing D. Xu
  • Xiasong Ma
  • Yong-Guang Tong
  • Marc Landry
Part of the Advances in Behavioral Biology book series (ABBI, volume 53)


It is now well established that neuropeptides act as messenger molecules in the nervous system, and they often coexist with classical transmitters such as noradrenaline (NA), acetylcholine, and amino acids (see 1). In fact, the first example in the mammalian nervous system showed that peripheral sympathetic noradrenergic neurons express the tetradecapeptide somatostatin, a study based on immunohistochemistry using antibodies to the catecholamine synthesizing enzyme dopamine beta-hydroxylase (DBH).2 This was possible thanks to our collaboration with the late Professor Menek Goldstein at New York University School of Medicine, since he isolated all four enzymes in the catecholamine (CA) synthesis pathway and raised antibodies to these enzymes.3 This was the basis for Kjell Fuxe’s and my interaction with Menek over a period of three decades starting in 1969. It is an honour to acknowledge Menek Goldstein’s contributions to our work on CA-peptide interactions.


Locus Coeruleus Nephrogenic Diabetes Insipidus Locus Coeruleus Neuron Galanin Receptor Magnocellular Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Hökfelt, C. Broberger, Z.-Q. Xu, V. Sergeyev, R. Ubink and M. Diez, Neuropeptides — an overview. Neuropharmacology 39, 1337–1356 (2000).PubMedCrossRefGoogle Scholar
  2. 2.
    T. Hökfelt, L. G. Elfvin, R. Elde, M. Schultzberg, M. Goldstein and R. Luft, Occurrence of somatostatin-like immunoreactivity in some peripheral sympathetic noradrenergic neurons. Proc. Natl. Acad. Sci. USA 74, 3587–3591 (1977).PubMedCrossRefGoogle Scholar
  3. 3.
    M. Goldstein, B. Anagnoste, L. S. Freedman, M. Roffman, R. P. Ebstein, D. H. Park, K. Fuxe and T. Hökfelt. (1973) Characterization, localization and regulation of catecholamine synthesizing enzymes. In Frontiers in Catecholamine Research. (editors, E. Usdin and E. Snyder) pp. 69–78. Elsevier/Pergamon Press, New York.Google Scholar
  4. 4.
    M. Schultzberg, J. M. Lundberg, T. Hökfelt, L. Terenius, J. Brandt, R. P. Elde and M. Goldstein, Enkephalin-like immunoreactivity in gland cells and nerve terminals of the adrenal medulla. Neuroscience 3, 1169–1186(1978).PubMedCrossRefGoogle Scholar
  5. 5.
    H. Holgert, Å. Dagerlind and T. Hökfelt, Immunohistochemical characterization of the peptidergic innervation of the rat adrenal gland. Horm. Metabol. Res. 30, 315–322 (1998).CrossRefGoogle Scholar
  6. 6.
    Å. Dagerlind, M. Pelto-Huikko, J. Lundberg, R. Ubink, A. Verhofstad, S. Brimijoin and T. Hökfelt, Immunologically induced sympathectomy of preganglionic nerves by antibodies against acetylcholinesterase: increased levels of peptides and their mRNAs in rat adrenal cells. Neuroscience 62, 217–239 (1994).PubMedCrossRefGoogle Scholar
  7. 7.
    T. Melander, T. Hökfelt, Å. Rökaeus, A. C. Cuello, W. H. Oertel, A. Verhofstad and M. Goldstein, Coexistence of galanin-like immunoreactivity with catecholamines, 5-hydroxytryptamine, GABA and neuropeptides in the rat CNS. J. Neurosci. 6, 3640–3654 (1986).PubMedGoogle Scholar
  8. 8.
    K. Tatemoto, Å. Rökaeus, H. Jörnvall, T. J. McDonald and V. Mutt, Galanin- a novel biologically active peptide from porcine intestine. FEBS 164, 124–128 (1983).CrossRefGoogle Scholar
  9. 9.
    Z.-Q. D. Xu, T.-J. S. Shi and T. Hökfelt, Galanin/GMAP- and NPY-like immunoreactivities in locus coeruleus and noradrenergic nerve terminals in the hippocampal formation and cortex with notes on the galanin-R1 and — R2 receptors. J. Comp. Neurol. 392, 227–251 (1998).PubMedCrossRefGoogle Scholar
  10. 10.
    A. Carlsson. (1965) Drugs which block the storage of 5-hydroxytryptamine and related amines. In Handbuch Exp. Pharmacol. (ed, V. Erspamer) pp. 529–592. Springer, Berlin.Google Scholar
  11. 11.
    V. Seutin, P. Verbanck, L. Massotte and A. Dresse, Galanin decreases the activity of locus coeruleus neurons in vitro. Eur. J. Pharmacol. 164, 373 (1989).PubMedCrossRefGoogle Scholar
  12. 12.
    J. Sevcik, E. P. Finta and P. Illes, Galanin receptors inhibit the spontaneous firing of locus coeruleus neurones and interact with μ-opioid receptors. Eur. J. Pharmacol. 230, 223–230 (1993).PubMedCrossRefGoogle Scholar
  13. 13.
    V. Pieribone, Z.-Q. Xu, X. Zhang, S. Grillner, T. Bartfai and T. Hökfelt, Galanin induces a hyperpolarization of norepinephrine-containing locus coeruleus neurons in the brainstem slice. Neuroscience 64, 861–874 (1995).PubMedCrossRefGoogle Scholar
  14. 14.
    G. K. Aghajanian, J. M. Cedarbaum and R. Y. Wang, Evidence for norepinephrine-mediated collateral inhibition of locus coeruleus neurons. Brain Res. 136, 570–577 (1977).PubMedCrossRefGoogle Scholar
  15. 15.
    J. T. Williams, R. A. North, S. A. Shefher, S. Nishi and T. M. Egan, Membrane properties of rat locus coeruleus neurones. Neuroscience 13, 137–56 (1984).PubMedCrossRefGoogle Scholar
  16. 16.
    Z.-Q. D. Xu, Y.-G. Tong and T. Hökfelt, Galanin enhances noradrenaline-induced outward current on locus coeruleus noradrenergic neurons. NeuroReport, 12, 1779–1782 (2001).PubMedCrossRefGoogle Scholar
  17. 17.
    T. Hökfelt, K. Fuxe, M. Goldstein and O. Johansson, Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain. Brain Res. 66, 235–251 (1974).CrossRefGoogle Scholar
  18. 18.
    G. Aston-Jones, B. Astier and M. Ennis, Inhibition of locus coeruleus noradrenergic neurons by C1 adrenergic cells in the rostral ventral medulla. Neuroscience 48, 371–382 (1992).PubMedCrossRefGoogle Scholar
  19. 19.
    V. R. Holets, T. Hökfelt, A. Rökaeus, L. Terenius and M. Goldstein, Locus coeruleus neurons in the rat containing neuropeptide Y, tyrosine hydroxylase or galanin and their efferent projections to the spinal cord, cerebral cortex and hypothalamus. Neuroscience 24, 893–906 (1988).PubMedCrossRefGoogle Scholar
  20. 20.
    J. F. Morris, D. V. Pow, H. W. Sokol and A. Ward. (1993) Dendritic release of peptides from magnocellular neurons in normal rats, Brattleboro rats and mice with hereditary nephrogenic diabetes insipidus. In Vasopressin (ds, P. Gross, D. Richter and G. L. Robertson) pp. 171–182. John Libbey Eurotext, Paris.Google Scholar
  21. 21.
    T. A. Branchek, K. E. Smith, C. Gerald and M. W. Walker, Galanin receptor subtypes. TiPS 21, 109–116 (2000).PubMedGoogle Scholar
  22. 22.
    D. O’Donnell, S. Ahmad, C. Wahlestedt and P. Walker, Expression of the novel galanin receptor subtype GALR2 in the adult rat CNS: Distinct distribution from GALR1. J. Comp. Neurol. 409, 469–481 (1999).PubMedCrossRefGoogle Scholar
  23. 23.
    X. Ma, Y.-G. Tong, R. Schmidt, W. Brown, K. Payza, L. Hodzic, C. Pou, C. Godbout, T. Hökfelt and Z.-Q.D. Xu, Effect of galanin receptor agonists on locus coeruleus neurons. Brain Res., in press (2001).Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Tomas Hökfelt
    • 1
  • Zhi-Qing D. Xu
    • 1
  • Xiasong Ma
    • 1
  • Yong-Guang Tong
    • 1
  • Marc Landry
    • 2
  1. 1.Department of NeuroscienceKarolinska InstitutetStockholmSweden
  2. 2.Institute Francois MagendieUniversity of BordeauxBordeauxFrance

Personalised recommendations