Skip to main content

Nonlinear Impulses in Particulate Materials

  • Chapter
Dynamics of Heterogeneous Materials

Part of the book series: High-Pressure Shock Compression of Condensed Matter ((SHOCKWAVE))

Abstract

Impulse propagation in granular (particular) materials due to the loading under impact or contact explosion is of practical interest for many applications. For example, granular bed from iron shot is used for the damping of contact explosions during technological operations in explosive chambers. It effectively prevents the chamber wall from the high-amplitude shock wave. The propagation and reflection of nonlinear waves with large amplitudes in sand or soil is important for the detection of foreign objects. The nature of waves in these materials is also of general interest because they represent the collective dynamic response strongly effected by mesostructure. At the same time, these materials pose some fundamental questions which demand reconsideration of the basic foundation of wave dynamics including shock-wave propagation and shock dynamics particularly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert, J.P., and Bona, J.L. (1991) Comparisons Between Model Equations for Long Waves. Journal of Nonlinear Science, 1, pp. 345–374.

    MathSciNet  ADS  MATH  Google Scholar 

  • Anderson, G.D. (1964) Ph.D. thesis, Washington State University, Pullman.

    Google Scholar 

  • Apalikov, Yu.I., Bronovskii G.A., Konon Yu.A., et al. (1983) Support for Explosive Cladding of Metallic Surfaces. Patent USSR (A.C. 330702A SSSR, MKI B23K20/08), Discoveries, Inventions, no. 24, p. 200 (in Russian).

    Google Scholar 

  • Asano, N. (1974) Wave Propagation in Non-Uniform Media. Prog. Theor. Phys., Supplement No. 55.

    Google Scholar 

  • Balk, A.M., Cherkaev, A.V., and Slepyan, L.I. (2001) Dynamics of Chains with Non-Monotone Stress-Strain Relations. II. Nonlinear Waves and Waves of Phase Transition. J. Mech. Phys. Solids, 49, pp. 149–171.

    MathSciNet  ADS  MATH  Google Scholar 

  • Bardenhagen, S., and Triantafyllidis, N. (1994) Derivation of Higher Order Gradient Continuum Theories in 2,3-D Non-Linear Elasticity from Periodic Lattice Models. J. Mech. Phys. Solids, 42, no. 1, pp. 111–139.

    MathSciNet  ADS  MATH  Google Scholar 

  • Bardenhagen, S.G., and Brackbill, J.U. (1998) Dynamic Stress Bridging in Granular Material. J. Applied Physics, 83, no. 11, pp. 5732–5740.

    ADS  Google Scholar 

  • Belyaeva, I.Yu., Zaitsev, V.Yu., and Ostrovskii, L.A. (1993) Nonlinear Acoustoelastic Properties of Granular Media. Acoustical Physics, 39, no. 1, pp. 11–15.

    ADS  Google Scholar 

  • Belyaeva, I.Yu., Zaitsev, V.Yu., and Timanin, E.M. (1994) Experimental Study of Nonlinear Elastic Properties of Granular Media with Nonideal Packing. Acoustical Physics, 40, no. 6, pp. 789–793.

    ADS  Google Scholar 

  • Benjamin, T.B., Bona, J.L., and Mahony, J.J. (1972) Model Equations for Long Waves in Nonlinear Dispersive Systems. Philosophical Transactions of the Royal Society of London A. Mathematical and Physical Sciences, 272, no. 1220, pp. 47–78.

    MathSciNet  ADS  MATH  Google Scholar 

  • Benson, D.J. (1994) An Analysis by Direct Numerical Simulation of the Effects of Particle Morphology on the Shock Compression of Copper Powder. Modelling Simul. Mater. Sci. Eng. 2, pp. 535–550.

    ADS  Google Scholar 

  • Bernoulli, D. (1738) Theoremata de Oscillationibus Corporum Filo Flexili Connexorum et Catenae Verticaliter Suspensae. Comm. Acad. Sci. Petrop., 6, pp. 108–122. English translation: in The Evolution of Dynamics: Vibration Theory from 1687 to 1742. 1981, Springer-Verlag, New York, pp. 156–176.

    Google Scholar 

  • Bernoulli, D. (1741) Letter of 28 January 1741, from Correspondance Mathematique et Physique de Quelques Celebres Geometres du XVIII eme Siecle, vol. 2, St. Petersburg, 1843. Facs. rep. Johnson, New York, 1968. English translation: In: Cannon, J.T., and Dostrovsky, S. (1981) The Evolution of Dynamics: Vibration Theory from 1687 to 1742. Springer-Verlag, New York, p. 46.

    Google Scholar 

  • Bland, D.R. (1969) Nonlinear Dynamic Elasticity. Blaisdell, New York.

    MATH  Google Scholar 

  • Bogdanov A.N., and Skvortsov A.T. (1992) Nonlinear Elastic Waves in a Granular Medium. Journal de Physique, Coll. C1, 2, pp. C1–779-C1–782.

    Google Scholar 

  • Bona, J.L., Pritchard, W.G., and Scott, L.R. (1983) A Comparison of Solutions of Two Model Equations for Long Waves. Proceedings of the AMS-SIAM Conference on Fluid Dynamical Problems in Astrophysics and Geophysics, Chicago, July 1981. Lectures in Applied Mathematics, 20, (Edited by N. Lebovitz). American Mathematical Society, Providence, RI, pp. 235–267.

    Google Scholar 

  • Boutreux, T., Raphael, E., and de Gennes, P.G. (1997) Propagation of a Pressure Step in a Granular Material; The Role of Wall Friction. Phys. Rev. B, 55, no. 5, pp. 5759–5773.

    ADS  Google Scholar 

  • Brandt, H. (1955) A Study of the Speed of Sound in Porous Granular Media. ASME Journal of Applied Mechanics, 22, pp. 479–486.

    MATH  Google Scholar 

  • Chapman, S. (1960) Misconception Concerning the Dynamics of the Impact Ball Apparatus. Am. J. Phys., 28, no. 8, pp. 705–711.

    ADS  Google Scholar 

  • Chatterjee, A. (1999) An Asymptotic Solution for Solitary Waves in a Chain of Elastic Spheres. Phys. Rev. B, 59, no. 5, pp. 5912–5919.

    ADS  Google Scholar 

  • Chen, P.J. (1973) Growth and Decay of Waves in Solids. In: Encyclopedia of Physics (Edited by S. Fluegge and C. Truesdell), Vol. VI a/3. Springer-Verlag, Berlin.

    Google Scholar 

  • Coleman, B.D. (1971a) On Retardation Theorems. Archive for Rational Mechanics and Analysis, 43, pp. 1–23.

    MathSciNet  ADS  MATH  Google Scholar 

  • Coleman, B.D. (1971b) A Mathematical Theory of Lateral Sensory Inhibition. Archive for Rational Mechanics and Analysis, 43, pp. 79–100.

    MathSciNet  ADS  MATH  Google Scholar 

  • Coleman, B.D. (1983) Necking and Drawing in Polymeric Fibers Under Tension. Archive for Rational Mechanics and Analysis, 83, pp. 115–137.

    MathSciNet  ADS  MATH  Google Scholar 

  • Coleman, B.D. (1985) On the Cold Drawing of Polymers. Comp. & Maths. With Appls., 11, nos. 1–3, pp. 35–65.

    MATH  Google Scholar 

  • Coste, C, Falcon, E., and Fauve, S. (1997) Solitary Waves in a Chain of Beads Under Hertz Contact. Physical Review E, 56, no. 5, pp. 6104–6117.

    ADS  Google Scholar 

  • Coste, C, and Gilles, B. (1999) On the Validity of Hertz Contact Law for Granular Material Acoustics. The European Physical Journal B, 7, pp. 155–168.

    ADS  Google Scholar 

  • Cristescu, N. (1967) Dynamic Plasticity. North-Holland, Amsterdam.

    MATH  Google Scholar 

  • Dash, P.C., and Patnaik, K. (1981) Solitons in Nonlinear Diatomic Lattices. Progress in Theoretical Physics, 65, no. 5, pp. 526–1541.

    Google Scholar 

  • de Gennes, P.G. (1996) Static Compression of a Granular Medium: The ‘Soft” Shell Model. Europhys. Lett. 5, no. 2, pp. 145–149.

    Google Scholar 

  • Deresiewicz, H. (1958) Stress-Strain Relations for a Simple Model of a Granular Medium. ASME Journal of Applied Mechanics, 25, pp. 402–406.

    MATH  Google Scholar 

  • Digby, P.J. (1981) The Effective Elastic Moduli of Porous Granular Rocks. ASME Journal of Applied Mechanics, 48, pp. 803–808.

    ADS  MATH  Google Scholar 

  • Dinda, P.T., and Remoissenet, M. (1999) Breather Compactons in Nonlinear Klein-Gordon Systems. Phys. Rev. E, 60, no. 5, pp. 6218–6221.

    ADS  Google Scholar 

  • Druzhinin, O.A., and Ostrovskii, L.A. (1991) Solitons in Discrete Lattices. Physics Letters A, 160, pp. 357–362.

    ADS  Google Scholar 

  • Duffy, J., and Mindlin, R.D. (1957) Stress-Strain Relations and Vibrations of a Granular Medium. ASME Journal of Applied Mechanics, 24, pp. 585–593.

    MathSciNet  Google Scholar 

  • Dusuel, S., Michaux, P., and Remoissenet, M. (1998) From Kinks to Compactonlike Kinks. Phys. Rev. E, 57, no. 2, pp. 2320–2326.

    ADS  Google Scholar 

  • Duvall, G.E., Manvi, R., and Lowell, S.C. (1969) Steady Shock Profiles in a One-Dimensional Lattice. Journal of Applied Physics, 40, no. 9, pp. 3771–3775.

    ADS  Google Scholar 

  • Falcon, E. (1997) Comportements Dynamiques Associes au Contact de Hertz: Processus Collectifs de Collision et Propagation D’Ondes Solitaires Dans les Milieux Granulaires. These 191–97, Diplome de Doctorat. L’Ecole Normale Superieure de Lyon.

    Google Scholar 

  • Falcon, E., Laroche, C, Fauve, S., and Coste, C. (1998a) Behavior of One Inelastic Ball Bouncing Repeatedly off the Ground. The European Physical Journal B, 3, pp. 45–57.

    ADS  Google Scholar 

  • Falcon, E., Laroche, C, Fauve, S., and Coste, C. (1998b) Collision of a 1-D Column of Beads with a Wall. The European Physical Journal B, 5, pp. 111–131.

    ADS  Google Scholar 

  • Fermi, E., Pasta, J.R., and Ulam, S.M. (1965) Studies of Non-Linear Problems. Technical Report. LA-1940, Los Alamos National Laboratory. Reprinted in Collected Works of E. Fermi, vol. II. University of Chicago Press, pp. 978–988.

    Google Scholar 

  • Filippov, A.T. (2000) The Versatile Soliton. Birkhauser, Boston.

    MATH  Google Scholar 

  • Friesecke, G., and Wattis, J.A.D. (1994) Existence Theorem for Solitary Waves on Lattices. Communications in Mathematical Physics, 161, no. 2, pp. 391–418.

    MathSciNet  ADS  MATH  Google Scholar 

  • Gassmann, F. (1951) Elastic Waves Through a Packing of Spheres. Geophysics, 16, pp. 673–685.

    ADS  Google Scholar 

  • Gavrilyuk, S.L. (1989) Modulation Equations for a Mixture of Gas Bubbles in an Incompressible Liquid. Prikl. Mekh. Tekh. Fiz., 30, no. 2, pp. 86–92 (in Russian). English translation: Journal of Applied Mechanics and Technical Physics (JAM) 1989, September, pp. 247–253.

    Google Scholar 

  • Gavrilyuk, S.L., and Nesterenko, V.F. (1993) Stability of Periodic Excitations for One Model of “Sonic Vacuum.” Prikl. Mekh. Tekh. Fiz., 34, no. 6, pp. 45–48 (in Russian). English translation: Journal of Applied Mechanics and Technical Physics(JAM) no. 6, 1993, pp. 784–787.

    MATH  Google Scholar 

  • Gavrilyuk, S.L., and Serre, D. (1995) A Model of a Plug-Chain System Near the Thermodynamic Critical Point: Connection with the Korteweg Theory of Capillarity and Modulation Equations. Proceedings of IUTAM Symposium on Waves in Liquid/Gas and Liquid/Vapor Two-Phase Systems (Edited S. Morioka and L.van Wijngaarden), Kyoto, Japan, 1994. Kluwer Academic, Dodrecht, pp. 419–428.

    Google Scholar 

  • Gavrilyuk, S.L., and Shugrin, S.M. (1996) Media with Equations of State that Depend on Derivatives. PrikL Mekh. Tekh. Fiz., 37, no. 2, pp. 35–49 (in Russian).

    MathSciNet  MATH  Google Scholar 

  • Gavrilyuk, S.L., and Shugrin, S.M. English translation: Journal of Applied Mechanics and Technical Physics (JAM) 1996, 37, no. 2, pp. 177–189.

    MathSciNet  ADS  Google Scholar 

  • Gilles, B., and Coste, C. (2001) Nonlinear Elasticity of a 2-D Regular Array of Beads. Powders and Grains (submitted).

    Google Scholar 

  • Goddard, J.D. (1990) Nonlinear Elasticity and Pressure-Dependent Wave Speeds in Granular Media. Proc. R. Soc. London A, 430, pp. 105–131.

    ADS  MATH  Google Scholar 

  • Godunov, S.K. (1961) An Interesting Class of Quasiliner Systems. Dokl. Akad. Nauk SSSR, 139, no. 3, pp. 521–523 (in Russian).

    MathSciNet  Google Scholar 

  • Goldsmith, W. (1960) Impact. Arnold, London.

    MATH  Google Scholar 

  • Goodman, M.A., and Cowin S.C. (1972) A Continuum Theory for Granular Materials. Archive for Rational Mechanics and Analysis, 44, pp. 249–266.

    MathSciNet  ADS  MATH  Google Scholar 

  • Gradshteyn, I.S., and Ryzhik I.M. (1980) Table of Integrals, Series, and Products. Academic Press, San Diego-Toronto, Harcourt Brace Jovanovich, p. 131.

    MATH  Google Scholar 

  • Groshkov, A.L., Kalimulin, R.R., Shalashov, G.M., and Shemagin, V.A. (1990) Nonlinear Interbore-Hole Probing with Modulation of Acoustic Wave by Seismic Fields. Izvestiya AN SSSR, 313, no. 1, p. 63–65 (in Russian).

    Google Scholar 

  • Hammack, J.L. (1973) A Note on Tsunamis: Their Generation and Propagation in an Ocean of Uniform Depth. J. Fluid Mech., 60, pp. 769–799.

    ADS  MATH  Google Scholar 

  • Hammack, J. L., and Segur, H. (1974) The Korteveg-de Vries Equation and Water Waves. Part 2. Comparison with Experiments. J. Fluid Mech., 65, pp. 289–314.

    MathSciNet  ADS  MATH  Google Scholar 

  • Hara, G. (1935) Theorie der Akustischen Schwingungsausbreitung in Gekornten Substanzen und Experimentelle Untersuchungen an Kohlepulver. Elektrische Nachrichtentechnik, 12, pp. 191–200.

    Google Scholar 

  • Hascoet, E, Herrmann, HJ., and Loreto, V. (1999) Shock Propagation in a Granular Chain. Phys. Rev. E, 59, no. 3, pp. 3202–3206.

    ADS  Google Scholar 

  • Hascoet, E., and Herrmann, H.J. (2000) Shocks in Non-Loaded Bead Chains With Impurities. The European Physical Journal B, 14, pp. 183–190.

    ADS  Google Scholar 

  • Herrmann, F., and Schmalzle, P. (1981) Simple Explanation of a Well-Known Collision Experiment. Am. J. Phys., 49, no. 8, pp. 761–764.

    ADS  Google Scholar 

  • Herrmann, F., and Seitz, P. (1982) How Does the Ball-Chain Work? Am. J. Phys., 50, no. 11, pp. 977–981.

    ADS  Google Scholar 

  • Herrmann, H.J., Stauffer, D., and Roux, S. (1987) Violation of Linear Elasticity due to Randomness. Europhys. Lett. 3, no. 3, pp. 265–267.

    ADS  Google Scholar 

  • Hill, T.G., and Knopoff, L. (1980) Propagation of Shock Waves in One-Dimensional Crystal Lattices. Journal of Geophysical Research, 85, no. B12, pp. 7025–7030.

    ADS  Google Scholar 

  • Hinch E.J., and Saint-Jean S. (1999) The Fragmentation of a Line of Balls by an Impact. Proc. R. Soc. Lond. A, 455, pp. 3201–3220.

    MathSciNet  ADS  MATH  Google Scholar 

  • Hong, J., Ji, J.-Y., and Kim, H., (1999) Power Laws in Nonlinear Chain under Gravity. Phys. Rev. Lett., 82, no. 15, pp. 3058–3061.

    ADS  Google Scholar 

  • Iida, K. (1939) Velocity of Elastic Waves in a Granular Substance. Bulletin of the Earthquake Research Institute, Japan, 17, pp. 783–808.

    Google Scholar 

  • Ipatiev, A.S., Kosenkov, A.P., Nesterenko, V.F., Meshcheriakov, Y.P., and Afanasenko, S.I. (1986) Experimental Investigation of Fracture Characteristics of Metal Plates with Semicylindrical Grooves at Explosive Loading with Contact Surface Charges. In: Proc. IX Intern. Conf on High Energy Rate Fabrication (Edited by V.F. Nesterenko and I.V. Yakovlev), USSR Academy of Sciences, Siberian Division, Novosibirsk, pp. 64–70.

    Google Scholar 

  • Jaeger, H.M., and Nagel, S.R. (1992) Physics of the Granular State. Science, 20, 255, pp. 1523–1531.

    Google Scholar 

  • Jaeger, H.M., and Nagel, S.R. (1996) Granular Solids, Liquids, and Gases. Reviews of Modern Physics, 68, no. 4, pp. 1259–1273.

    ADS  Google Scholar 

  • Jia, X., Caroli, C, and Velicky, B. (1999) Ultrasound Propagation in Externally Stressed Granular Media. Phys. Rev. Letters, 82, no. 9, pp. 1863–1866.

    ADS  Google Scholar 

  • Johnson, K.L. (1987) Contact Mechanics. Cambridge University Press, New York.

    Google Scholar 

  • Kivshar, Y.S. (1993) Intrinsic Localized Models as Solitons with a Compact Support. Phys. Rev. E, 48, no. 1, pp. R43-R45.

    MathSciNet  ADS  Google Scholar 

  • Korteweg, D.J., and de Vries, G. (1895) On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on an New Type of Long Stationary Waves. London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, ser. 5, 39, pp. 422–443.

    MATH  Google Scholar 

  • Kruskal, M. (1975) Nonlinear Wave Equations. In: Dynamical Systems, Theory and Applications, Lecture Notes in Physics, vol. 38. Springer-Verlag, Heidelberg, pp. 310–354.

    Google Scholar 

  • Kunin, I.A. (1975) Theory of Elastic Media with Microstructure. Nauka, Moscow (in Russian).

    Google Scholar 

  • Kuwabara, G., and Kono, K. (1987) Restitution Coefficient in a Collision between Two Spheres. Jap. J. Appl. Phys. 26, no. 8, pp. 1230–1233.

    ADS  Google Scholar 

  • Landau, L.D., and Lifshitz E.M. (1976) Mechanics. Translated from the Russian by J.B. Sykes and J.S. Bell, 3rd ed. Pergamon Press, Oxford.

    Google Scholar 

  • Landau, L.D., and Lifshitz E.M. (1995) Theory of Elasticity. Translated from the Russian by J.B. Sykes and W.H. Reid, 3rd English ed. Revised and enlarged by E.M. Lifshitz, A.M. Kosevich, and L.P. Pitaevskii. Butterworth, Oxford; Heinemann, Boston.

    Google Scholar 

  • Lazaridi, A.N., and Nesterenko, V.F. (1985) Observation of a New Type of Solitary Waves in a One-dimensional Granular Medium. Prikl. Mekh. Tekh. Fiz., 26, no. 3, pp. 115–118 (in Russian).English translation: Journal of Applied Mechanics and Technical Physics (JAM), 1985, pp. 405–408.

    Google Scholar 

  • Lee, M.H., Florencio, J. Jr., and Hong, J. (1989) Dynamic Equivalence of a Two-Dimensional Quantum Electron Gas and a Classical Harmonic Oscillator Chain with an Impurity Mass. Journal of Physics A, 22, no. 8, pp. L331-L335.

    ADS  Google Scholar 

  • Leibig, M. (1994) Model for the Propagation of Sound in Granular Materials. Phys. Rev. B, 49, no. 2, pp. 1647–1656.

    ADS  Google Scholar 

  • Liu, C.-H., and Nagel, S.R. (1992) Sound in Sand. Phys. Rev. Letters, 68, no. 15, pp. 2301–2304.

    ADS  Google Scholar 

  • Liu, C.-H., and Nagel S.R., (1993a) Sound in a Granular Material, Disorder and Nonlinearity. Phys. Rev. B, 48, no. 21, pp. 15646–15650.

    ADS  Google Scholar 

  • Liu, C.-H., and Nagel, S.R. (1993b) Sound and Vibration in Granular Material. J. Phys.: Condens. Matter, 6, pp. A433-A436.

    ADS  Google Scholar 

  • Liu, C.-H., Nagel, S.R., Schecter, D.A., Coppersmith, S.N., Majumdar, S., Narayan, O., and Witten, T.A. (1995) Force Fluctuations in Bead Packs. Science, 269, pp. 513–515.

    ADS  Google Scholar 

  • Mach, E. (1868) Sitzungsber. math.-naturwiss. Cl. kaiserlich. Akad. Wissenschaften, Vienna, 57, no. 2, pp. 11–19.

    Google Scholar 

  • MacKay, R.S. (1999) Solitary Waves in a Chain of Beads under Hertz Contact. Physics Letters A, 251, no. 3, pp. 191–192.

    ADS  Google Scholar 

  • Madsen, O.S., and Mei, C.C. (1969) The Transformation of a Solitary Wave over an Uneven Bottom. J. Fluid Mech., 39, pp. 781–791.

    ADS  Google Scholar 

  • Manciu, F.S., Manciu, M., and Sen, S. (2000) Possibility of Controlled Ejection of Ferrofluid Grtains from a Magnetically Ordered Ferrofluid Using High Frequency Non-linear Acoustic Pulses — a Particle Dynamical Study. J. Magnetism and Magnetic Materials, 220, no. 2–3, pp. 285–292.

    Google Scholar 

  • Manciu, M., Sen, S., and Hurd, A.J. (1999a) The Propagation and Backscattering of Soliton-Like Pulses in a Chain of Quartz Beads and Related Problems (I). Propagation. Physica A, 274, pp. 588–606.

    ADS  Google Scholar 

  • Manciu, M., Sen, S., and Hurd, A.J. (1999b) The Propagation and Backscattering of Soliton-Like Pulses in a Chain of Quartz Beads and Related Problems. (II). Backscattering Physica A, 214, pp. 607–618.

    ADS  Google Scholar 

  • Manvi, R., Duvall, G.E., and Lowell, S.C. (1969) Finite Amplitude Longitudinal Waves in Lattice. Int. J. Mech. Sci., 11, pp. 1–9.

    MATH  Google Scholar 

  • McCarthy, M.F. (1975) Singular Surfaces and Waves, in Continuum Physics (Edited by A.C. Eringen), vol. II. Academic Press, New York, pp. 450–521.

    Google Scholar 

  • Mehrabadi, M.M., and Nemat-Nasser, S. (1983) Stress, Dilatancy and Fabric in Granular Materials. Mechanics of Materials, 2, no. 2, pp. 155–61.

    Google Scholar 

  • Melin, S. (1994) Wave Propagation in Granular Assemblies. Phys. Rev. B, 49, no. 3, pp. 2353–2361.

    ADS  Google Scholar 

  • Menon, V.V., Sharma, V.D., and Jeffrey, A. (1983) On the General Behavior of Acceleration Waves. Applicable Analysis, 16, pp. 101–120.

    MathSciNet  MATH  Google Scholar 

  • Mertens, F.G., and Buttner, H. (1986) Solitons on the Toda Lattice: Thermodynamical and Quantum-Mechanical Aspects. In: Solitons, (Edited by S.E. Trullinger, V.E. Zakharov, and V.L. Pokrovsky). Elsevier Science, New York, pp. 723–781.

    Google Scholar 

  • Mokross, F., and Buttner H. (1981) Comments on the Diatomic Toda Lattice. Phys. Rev. A24, no. 5, pp. 2826–2828.

    MathSciNet  ADS  Google Scholar 

  • Naughton, M.J., Shelton, R., Sen, S., Manciu, M. (1998) Detection of Non-Metallic Landmines Using Shock Impulses and MEMS Sensors. In: Second International Conference on Detection of Abandoned Land Mines (IEE Conf. Publ. No. 458), (Second International Conference on Detection of Abandoned Land Mines, Edinburgh, 12–14 October 1998). IEE, London, pp. 249–252.

    Google Scholar 

  • Negreskul, S.I. (1993) Modeling of Granular Materials under Dynamic Loading. Author’s Abstract of PhD Thesis. Institute of Physics of Strength and Material Science, Tomsk, p. 17.

    Google Scholar 

  • Nesterenko, V.F. (1983a) Propagation of Nonlinear Compression Pulses in Granular Media. (Abstract of presentation on theoretical seminar of academician L.V. Ovsyannikov, 24 March, 1982). Izvestia Akademii Nauk SSSR, Mekhanika Gzidkosti i Gasa, no. 1, p. 191 (in Russian).

    Google Scholar 

  • Nesterenko, V.F. (1983b) Propagation of Nonlinear Compression Pulses in Granular Media. Prikl. Mekh. Tekh. Fiz., 24, no. 5, pp. 136–148 (in Russian). English translation: Journal of Applied Mechanics and Technical Physics (JAM), 1983b, no. 5, pp. 733–743.

    Google Scholar 

  • Nesterenko, V.F., Fomin V.M., and Cheskidov P.A. (1983a) Attenuation of Strong Shock Waves in Laminate Materials. In: Nonlinear Deformation Waves (Edited by U. Nigul and J. Engelbrecht). Springer-Verlag, Berlin, pp. 191–197.

    Google Scholar 

  • Nesterenko, V.F., Fomin, V.M., and Cheskidov P.A. (1983b) Damping of Strong Shocks in Laminar Materials. Zhurnal Prikladnoi Mekhaniki i Tehknicheskoi Fiziki, 24, no. 4, pp. 130–139 (in Russian). English translation: Journal of Applied Mechanics and Technical Physics, January 1984, pp. 567–575.

    Google Scholar 

  • Nesterenko, V.F., et al. (1986) Development of Protection Method for Reinforced Concrete Plates Against Spall after Contact Explosion. Technical Report, Special Design Office of High-Rate Hydrodynamics, Novosibirsk, #GR01850066141 (#SKB02870009933), p. 61.

    Google Scholar 

  • Nesterenko, V.F., and Lazaridi, A.N. (1987) Solitons and Shock Waves in One-Dimensional Granular Media. In: Problems of Nonlinear Acoustics, Proceedings of 11 International Symposium on Nonlinear Acoustics, Novosibirsk, 24–28 August, Part 1, pp. 309–313 (in Russian).

    Google Scholar 

  • Nesterenko, V.F. (1988) Nonlinear Phenomena under Impulse Loading of Heterogeneous Condensed Media. Doctor in Physics and Mathematics Thesis, Academy of Sciences, Siberian Branch, Russia, Lavrentyev Institute of Hydrodynamics, Novosibirsk.

    Google Scholar 

  • Nesterenko, V.F., and Lazaridi, A.N. (1990) The Peculiarities of Wave Processes in Periodical Systems of Particles with Different Masses. In: Obrabotka materialov impulsnymi nagruzkami, Novosibirsk, pp. 30–42 (in Russian).

    Google Scholar 

  • Nesterenko, V.F. (1992a) Nonlinear Waves in “Sonic Vacuum”. Fizika Goreniya i Vzryva, 28, no. 3 pp. 121–123 (in Russian).

    Google Scholar 

  • Nesterenko, V.F. (1992b) Pulse Compression Nature in Strongly Nonlinear Medium. In: Proc. of Second Intern. Symp. on Intense Dynamic Loading and Its Effects, Chengdu, China, pp. 236–240.

    Google Scholar 

  • Nesterenko, V.F. (1992c) A New Type of Collective Excitations in a “Sonic Vacuum.” Akustika neodnorodnykh sred, Novosibirsk, pp. 228–233 (in Russian).

    Google Scholar 

  • Nesterenko, V.F. (1992d) High-Rate Deformation of Heterogeneous Materials. Nauka, Novosibirsk, Ch. 2, pp. 51–80 (in Russian).

    Google Scholar 

  • Nesterenko, V.F. (1993a) Examples of “Sonic Vacuum,” Fizika Goreniya i Vzryva, no. 2, pp. 132–134 (in Russian).

    Google Scholar 

  • Nesterenko, V.F. (1993b) Solitary Waves in Discrete Medium with Anomalous Compressibility. Fizika Goreniya i Vzryva, 29, no. 2, pp. 134–136 (in Russian).

    MathSciNet  Google Scholar 

  • Nesterenko, V.F., (1994) Solitary Waves in Discrete Media with Anomalous Compressibility and Similar to “Sonic Vacuum,” Journal De Physique IV, Colloque C8, supplement au Journal de Physique III, 4, pp. C8–72-C8–734.

    Google Scholar 

  • Nesterenko, V.F. (1995) Continuous Approximation for Wave Perturbations in a Nonlinear Discrete Medium. Fizika Goreniya i Vzyva, 31, no. 1, pp. 119–123 (in Russian). English translation: Explosion, Combustion and Shock Waves, July, 1995, pp. 116–119.

    Google Scholar 

  • Nesterenko, V.F., Lazaridi, A.N., and Sibiryakov, E.B. (1995) The Decay of Soliton at the Contact of Two “Acoustic Vacuums.” Prikl. Mekh. Tekh. Fiz., 36, no. 2, pp. 19–22 (in Russian). English translation: Journal of Applied Mechanics and Technical Physics (JAM), September, 1995, pp. 166–168.

    Google Scholar 

  • Nesterenko, V.F. (1999) Solitons, Shock Waves in Strongly Nonlinear Particulate Media. Presentation at 11th APS Topical Group Meeting on Shock Compression of Condensed Matter, Snowbird, Utah, 27 June-2 July 1999. Bulletin of the American Physical Society, 44, no. 2, p. 86.

    Google Scholar 

  • Nesterenko, V.F. (2000) Solitons, Shock Waves in Strongly Nonlinear Particulate Media. In: Shock Compression of Condensed Matter—1999 (Edited by M.D. Furnish, L.C. Chabildas, and R.S. Hixson). AIP, New York, pp. 177–180.

    Google Scholar 

  • Nesterenko, V.F. (2001) New Wave Dynamics in Granular State. In: Granular State, Materials Research Society Symposium Proceedings (Edited by S. Sen and M.L. Hunt). Materials Research Society, Warrendale, Pennsylvania, pp. BB3.1.1-BB.3.1.12.

    Google Scholar 

  • Nowacki, W.K. (1978) Stress Waves in Non-Elastic Solids. Pergamon Press. Oxford.

    Google Scholar 

  • Nunziato, J., and Walsh, E. (1977) On the Influence of Void Compaction and Non-Uniformity on the Propagation of One-Dimensional Acceleration Waves in Granular Materials. Arch. Rational Mech. Anal, 64, pp. 299–316.

    MathSciNet  ADS  MATH  Google Scholar 

  • Nunziato, J., and Cowin, S.C. (1979) A Nonlinear Theory of Elastic Materials with Voids. Arch. Rational Mech. Anal, 72, pp. 175–201.

    MathSciNet  ADS  MATH  Google Scholar 

  • Nunziato, J., Kennedy, J.E., and Walsh, E. (1978) The Behavior of One-Dimensional Acceleration Waves in Inhomogeneous Granular Solids. Int. J. Engng. Sci., 16, pp. 637–648.

    MATH  Google Scholar 

  • Ono, H. (1972) Wave Propagation in an Inhomogeneous Anharmonic Lattice. Journal of the Physical Society of Japan, 32, no. 2, pp. 332–336.

    ADS  Google Scholar 

  • Ostoja-Starzewski, M. (1984) Stress Wave Propagation in Discrete Random Solids. In: Wave Phenomena: Modern Theory and Applications (Edited by C. Rogers and T. Bryant). Elsevier Science, Amsterdam. North-Holland Mathematics Studies, vol. 97, pp. 267–278.

    Google Scholar 

  • Ostoja-Starzewski, M. (1991a) Wavefront Propagation in a Class of Random Microstructures—I: Bilinear Elastic Grains. Int. Journal of Non-Linear Mechanic, 26, pp. 659–669.

    ADS  Google Scholar 

  • Ostoja-Starzewski, M. (1991b) Transient Waves in a Class of Random Heterogeneous Media. Appl. Mech. Rev. 44, no. 11, Part 2, pp. S199-S209.

    MathSciNet  ADS  Google Scholar 

  • Ostoja-Starzewski, M. (1993) On the Critical Amplitudes of Acceleration Wave to Shock Wave Transition in White-Noise Random Media. J. Appl. Phys. (TAMP), 4, pp. 865–879.

    MathSciNet  Google Scholar 

  • Ostoja-Starzewski, M. (1994) Transition of Acceleration Waves into Shock Waves in Random Media. Appl. Mech. Rev. (Special Issue: Nonlinear Waves in Solids), 47 (Pt. 2).

    Google Scholar 

  • Ostoja-Starzewski, M. (1995) Wavefront Propagation in a Class of Random Microstructures—II: Nonlinear Elastic Grains. Int. Journal of Non-Linear Mechanics, 30, no. 6, pp. 771–781.

    ADS  MATH  Google Scholar 

  • Parker, D.F., and Seymour, B.R. (1980) Finite Amplitude One-Dimensional Pulses in an Inhomogeneous Granular Material. Archive for Rational Mechanics and Analysis, 72, pp. 265–284.

    MathSciNet  ADS  MATH  Google Scholar 

  • Pendry, J.B., Holden, A.J., Robbins, D.J., and Stewart, W.J. (1999) Magnetism From Conductors and Enhanced Nonlinear Phenomena. IEEE Transactions on Microwave Theory and Techniques, 47, no. 11, pp. 2075–2084.

    ADS  Google Scholar 

  • Radjai, F., Jean, M., Moreau, J.-J., Roux, S. (1996) Force Distribution in Dense Two-Dimensional Granular Systems. Phys. Rev. Letters, 77, no. 2, pp. 274–277.

    ADS  Google Scholar 

  • Reddy, T.Y., Reid, S.R., and Barr, R. (1991) Experimental Investigation of Inertia Effects in One-Dimensional Metal Ring Systems Subjected to End Impact—II. Free-Ended Systems. Int. J. Impact Engng. 11, no. 4, pp. 463–480.

    Google Scholar 

  • Remoissenet, M. (1999) Waves Called Solitons (Concepts and Experiments). 3rd revised and enlarged edition. Springer-Verlag, Berlin.

    Google Scholar 

  • Rosenau, P. (1986a) A Quasi-Continuous Description of a Nonlinear Transmission Line. Physica Scripta, 34, pp. 827 – 829.

    ADS  Google Scholar 

  • Rosenau, P. (1986b) Dynamics of Nonlinear Mass-Spring Chains Near the Continuum Limit. Physica Letters A, 118, no. 5, pp. 222–227.

    MathSciNet  ADS  Google Scholar 

  • Rosenau, P. (1988) Dynamics of Dense Discrete Systems. Progress of Theoretical Physics, 79, no. 5, pp. 1028–1042.

    ADS  Google Scholar 

  • Rosenau, P., and Hyman, J.M. (1993) Compactons: Solitons with Finite Wavelength. Physical Review Letters, 70, no. 5, pp. 564–567.

    ADS  MATH  Google Scholar 

  • Rosenau, P. (1994) Nonlinear Dispersion and Compact Structures. Physical Review Letters, 73, no. 13, pp. 1737–1741.

    MathSciNet  ADS  MATH  Google Scholar 

  • Rosenau, P. (1996) On Solitons, Compactons, and Lagrange Maps. Physical Letters A, 211, pp. 265–275.

    MathSciNet  ADS  MATH  Google Scholar 

  • Rosenau, P. (1997) On Nonanalytic Solitary Waves Formed by a Nonlinear Dispersion. Physics Letters, 230, nos. 5–6, pp. 305–318.

    Google Scholar 

  • Rossmanith, H.P., and Shukla, A. (1982) Photoelastic Investigation of Dynamic Load Transfer in Granular Media. Acta Mechanica, 42, pp. 211–225.

    Google Scholar 

  • Russel, J.S. (1838) Report of the Committee on Waves. Report of the 7th Meeting of the British Association for the Advancement of Science, Liverpool, pp. 417–496.

    Google Scholar 

  • Russel, J.S. (1845) On Waves. Report of the 14th Meeting of the British Association for the Advancement of Science, York, pp. 311–390.

    Google Scholar 

  • Sadd, M.H., Tai, QiMing, and Shukla, A. (1993) Contact Law Effects on Wave Propagation in Particulate Materials Using Distinct Element Modeling. Int. J. Non-Linear Mechanics, 28, no. 2, pp. 251–265.

    ADS  MATH  Google Scholar 

  • Samsonov, A.M. (1987) Transonic and Subsonic Localized Waves in Nonlinear Elastic Waveguide. In: Proc. of Intern. Conference on Plasma Physics, Naukova Dumka, Kiev, 4, pp. 88–90.

    Google Scholar 

  • Sander J., and Hutter, K. (1991) On the Development of the Theory of the Solitary Wave. A Historical Essay. Acta Mechanica, 86, pp. 111–152.

    MathSciNet  MATH  Google Scholar 

  • Sander, J., and Hutter K. (1992) Evolution of Weakly Non-Linear Shallow Water Waves Generated by a Moving Boundary. Acta Mechanica, 91, pp. 19–155.

    Google Scholar 

  • Scott, D.R., and Stevenson, DJ. (1984) Magma Solitons. Geophysical Research Letters, 11, no. 11, pp. 1161–1164.

    ADS  Google Scholar 

  • Sen, S., Manciu, M., and Wright, J.D. (1998) Solitonlike Pulses in Perturbed and Driven Hertzian Chains and Their Possible Applications in Detecting Buried Impurities. Phys. Rev., E, 57, no. 2, pp. 2386–2397.

    ADS  Google Scholar 

  • Sen, S. (1998) Soliton-like Objects in Granular Beds. Presentation at UCSD Seminar in Mechanical and Materials Engineering, December 16, 1998.

    Google Scholar 

  • Sen, S., Manciu, M., and Manciu, F.S. (1999) Ejection of Ferrofluid Grains Using Nonlinear Acoustic Impulses—A Particle Dynamical Study. Applied Physics Letters, 75, no. 10, pp. 1479–1481.

    ADS  Google Scholar 

  • Sen, S., and Manciu, M. (1999) Discrete Hertzian Chains and Solitons. Physica A, 268, pp. 644–649.

    Google Scholar 

  • Shukla, A., Sadd, M.H., Xu, Y., and Tai, Q.M. (1993) Influence of Loading PulseDuration on Dynamic Load Transfer in a Simulated Granular Medium. J. Mech. Solids, J. Mech. Solids, 41, no. 11, pp. 1795–1808.

    ADS  Google Scholar 

  • Singh, R., Shukla, A., and Zervas, H. (1996) Explosively Generated Pulse Propagation through Particles Containing Natural Cracks. Mechanics of Materials, 23, pp. 255–270.

    Google Scholar 

  • Sinkovits, R.S., and Sen, S. (1995) Nonlinear Dynamics in Granular Columns. Phys. Rev. Letters, 74, no. 14, pp. 2686–2689.

    ADS  Google Scholar 

  • Sinkovits, R.S., and Sen, S. (1996) Sound Propagation in Impure Granular Columns. Phys. Rev., E, 54, no. 6, pp. 6857–6865.

    ADS  Google Scholar 

  • Smith, D.R., Vier, D.C., Padilla, W., Nemat-Nasser, S.C., and Schultz, S. (1999) Loop-Wire Medium for Investigating Plasmons at Microwave Frequencies. Applied Physics Letters, 75, no. 10, pp. 1425–1427.

    ADS  Google Scholar 

  • Sobczyk, K. (1992) Korteweg-de Vries Solitons in a Randomly Varying Medium. Int. Journal of Non-Linear Mechanics, 27, no. 1, pp. 1–8.

    MathSciNet  ADS  MATH  Google Scholar 

  • Strenzwik, D.E. (1979) Shock Profiles Caused by Different End Conditions in One-Dimensional Quiscent Lattices, J. Appl. Physics, 50, no. 11, pp. 6767–6772.

    ADS  Google Scholar 

  • Takahashi, D., and Satsuma, J. (1988) Explicit Solutions of Magma Equation. J. Phys. Soc. Japan, 57, no. 2, pp. 411–421.

    MathSciNet  ADS  Google Scholar 

  • Takahashi, D., Sachs, J.R., and Satsuma, J. (1990) Soliton Phenomena in a Porous Medium. In: Research Reports in Physics, Nonlinear Physics (Edited by Gu Chaohao, Li Yishen, and Tu Guizhang). Springer-Verlag, Berlin, pp. 214–220.

    Google Scholar 

  • Takahashi, D., and Sato, Y. (1949) On the Theory of Elastic Waves in a Granular Substance. Bulletin of the Earthquake Research Institute, Japan, 27, pp. 11–16.

    MathSciNet  Google Scholar 

  • Takahashi, D., and Sato, Y. (1950) On the Theory of Elastic Waves in a Granular Substance. Bulletin of the Earthquake Research Institute, Japan, 28, pp. 37–43.

    MathSciNet  Google Scholar 

  • Thornton, C, and Barnes, D.J. (1986) Computer Simulated Deformation of Compact Granular Assemblies. Acta Mechanica, 64, pp. 45–61.

    Google Scholar 

  • Timoshenko, S.P., and Goodier J.N. (1987) Theory of Elasticity, 3rd ed. McGraw-Hill, New York, p. 414.

    Google Scholar 

  • Toda, M. (1981) Theory of Nonlinear Lattices. Springer Series in Solid State Science, Vol. 20, Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Travers, T., Ammi, M., Bideau, D., Gervois, A., Messager, J.C., and Troadec, J.P. (1987) Uniaxial Compression of 2-D Packings of Cylinders. Effects of Weak Disorder. Europhys. Letters, 4, no. 3, pp. 329–332.

    ADS  Google Scholar 

  • Travers, T., Ammi, M., Bideau, D., Gervois, A., Messager, J.C., and Troadec, J.P. (1988) Mechanical Size Effects in 2-D Granular Media. J. Phys. France, 49, pp. 939–948.

    Google Scholar 

  • Triantafyllidis, N., and Bardenhagen, S. (1993) On High Order Gradient Continuum Theories in 1-D Nonlinear Elasticity. Derivation from and Comparison to the Corresponding Discrete Models. Journal of Elasticity, 33, pp. 259–293.

    MathSciNet  MATH  Google Scholar 

  • Tsai, D.H., and Beckett, C.W. (1966) Shock Wave Propagation in Cubic Lattices. Journal of Geophysical Research, 71, no. 10, pp. 2601–2608.

    ADS  Google Scholar 

  • Tsemahovich, B.D. (1988) Concept of Support Selection for Explosive Welding. Proc. International Symposium on Metal Explosive Working, Purdubice, Chehoslovakia, Vol. 1, pp. 82–89 (in Russian).

    Google Scholar 

  • Walton, K. (1987) The Effective Elastic Moduli of a Random Packing of Spheres. J. Mech. Phys. Solids, 35, no. 2, pp. 213–226.

    ADS  MATH  Google Scholar 

  • Whitham, G.B. (1970) Two-Timing, Variational Principles and Waves. J. Fluid Mechanics,44, pp. 373–395.

    MathSciNet  ADS  MATH  Google Scholar 

  • Whitham, G.B. (1974) Linear and Nonlinear Waves. Wiley, New York.

    MATH  Google Scholar 

  • Wright, T.W. (1984) Weak Shocks and Steady Waves in a Nonlinear Elastic Rod or Granular Material. Int. J. Solids Structures, 20, nos. 9/10, pp. 911–919.

    Google Scholar 

  • Wright, T.W. (1985) Nonlinear Waves in a Rod: Results for Incompressible Elastic Materials. Studies in Applied Mathematics, 72, pp. 149–160.

    MathSciNet  MATH  Google Scholar 

  • Yablonovitch, E. (1993) Photonic Band-Gap Crystals. J. Phys.: Condens. Matter, 5, pp. 2443–2460.

    ADS  Google Scholar 

  • Zabusky, N.J., and Galvin, C.J. (1971) Shallow-Water Waves, the Korteveg-de Vries Equation and Solitons. J. Fluid Mech., 47, pp. 811–824.

    ADS  Google Scholar 

  • Zaikin, A.D. (1990) Effective Elastic Moduli of Granular Media. Prikl. Mekh. Tekh. Fiz., 31, no. 1, pp. 91–96 (in Russian). English translation: Journal of Applied Mechanics and Technical Physics(JAM), July, 1990, pp. 85–89.

    Google Scholar 

  • Zakharov, V.E. (1972) Collapse of Langmuir Waves. Sov. Phys. JETP, 35, no. 5, pp. 908–914.

    ADS  Google Scholar 

  • Zakharov, V. E. (1974) On Stochastization of One-Dimensional Chains of Nonlinear Oscillators. Sov. Phys. JETP, 38, no. 1, pp. 108–110.

    ADS  Google Scholar 

  • Zhu, Y., Shukla, A., and Sadd, M.H. (1996) The Effect of Microstructural Fabric on Dynamic Load Transfer in Two-Dimensional Assemblies of Elliptical Particles. J. Mech. Phys. Solids, 44, no. 8, pp. 1283–1303.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nesterenko, V.F. (2001). Nonlinear Impulses in Particulate Materials. In: Dynamics of Heterogeneous Materials. High-Pressure Shock Compression of Condensed Matter. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3524-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3524-6_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2926-6

  • Online ISBN: 978-1-4757-3524-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics