Advertisement

Inverse Boundary-Value Problem for Ocean Acoustics Using Point Sources

  • Musaru Ikehata
  • George N. Makrakis
  • Gen Nakamura
Chapter

Abstract

We formulate and prove uniqueness for the reconstruction of a compact inhomogeneity of the sound speed embedded in a uniform ocean acoustic channel of finite depth. As input data, we use the Green function on a vertical cylinder enclosing the inhomogeneity, at constant frequency.

Keywords

Green Function Layer Potential Wire Rope Finite Depth Single Layer Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [C]
    K. Chelminski. The principle of limiting absorption in elasticity. Bull. Polish Acad. Sci. Math., 41:219–230, 1993.MathSciNetGoogle Scholar
  2. [CD1]
    E. Croc and Y. Dermenjian. Spectral analysis of a multistratified acoustic strip. I. Limiting absorption principle for a simple stratification. SIAM J. Math. Anal, 26:880–924, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [CD2]
    E. Croc and Y. Dermenjian. Spectral analysis of a multistratified acoustic strip. II. Asymptotic behavior of solutions for a simple stratification. SIAM J. Math. Anal, 27:1631–1652, 1996.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [CD3]
    E. Croc and Y. Dermenjian. A perturbative method for the spectral analysis of an acoustic multistratified strip. Math. Methods Appl Sci., 21:1681–1704, 1998.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [GX]
    R.P. Gilbert and Y. Xu. The propagation problem and far-field patterns in a stratified finite depth ocean. Math. Methods Appl. Sci., 12:199–208, 1990.MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. [I]
    M. Ikehata. Reconstruction of inclusion from boundary measurements (preprint).Google Scholar
  7. [IMN]
    M. Ikehata, G. Makarakis and G. Nakamura. Inverse boundary value problem for ocean acoustics. Math. Methods Appl. Sci., to appear.Google Scholar
  8. [M]
    S. Mizohata. The Theory of Partial Differential Equations. Cambridge University Press, London, 1973.zbMATHGoogle Scholar
  9. [N]
    A. Nachman. Reconstruction from boundary measurements. Ann. of Math., 128:531–577, 1988.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [X]
    Y. Xu. The propagating solution and far-field patterns for ocean acoustic harmonic waves in a finite depth ocean. Appl. Anal., 35:129–151, 1990.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Musaru Ikehata
  • George N. Makrakis
  • Gen Nakamura

There are no affiliations available

Personalised recommendations