Skip to main content

Freeze Bath Inversion for Estimation of Geoacoustic Parameters

  • Chapter

Abstract

This chapter describes a new approach for estimating geoacoustic model parameters by matched field inversion of broadband data. The objectives are to design an efficient method to invert accurate estimates of the geoacoustic parameters, and obtain statistical measures of the confidence limits. The essential requirements for the inversion are an efficient search mechanism for exploring the multidimensional model parameter space, and a cost function and propagation model that are appropriate for broadband data. The method should also be robust to sources of mismatch in the experiment, such as imprecise knowledge of the experimental geometry or of the geoacoustic model itself. In this approach, the cost function is based on a multifrequency processor that matches the measured waveform with modeled waveforms that are calculated by ray theory. The search process is a statistical freeze bath algorithm that provides a representation of the distribution of models that fit the data well. The efficiency of the search is improved by reparameterizing, using new parameters based on the covariance of the sampled models. The method is applied to synthetic data that simulate the environment of the Haro Strait tomography experiment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Basu and L.N. Frazer. Rapid determination for the critical temperature in simulated annealing. Science, 249:1409–1412, 1990.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. M.D. Collins, N.A. Kuperman, and H. Schmidt. Nonlinear inversion for ocean bottom properties. J. Acoust. Soc. Am., 92:2770–2883, 1992.

    Article  ADS  Google Scholar 

  3. N.R. Chapman, L. Jaschke, M.A. McDonald, H. Schmidt and M. Johnson. Low-frequency geoacoustic tomography experiments using light bulb sound sources in the Haro Strait sea trial. MTS/IEEE Oceans97, 2:763–768, 1997.

    Article  Google Scholar 

  4. RW. Cary and C.H. Chapman. Automatic one-dimensional waveform inversion of marine seismic reflection data. Geophys. J., 93:527–546, 1988.

    Article  ADS  MATH  Google Scholar 

  5. M.D. Collins and L. Fishman. Efficient navigation of parameter landscapes. J. Acoust. Soc. Am., 98:1637–1644, 1995.

    Article  ADS  Google Scholar 

  6. N.R. Chapman and C.E. Lindsay. Matched field inversion for geoacoustic parameters in shallow water. IEEE J. Ocean. Eng., 21:347–354, 1996.

    Article  Google Scholar 

  7. M.R. Fallat and S.E. Dosso. Geoacoustic inversion via local, global and hybrid algorithms. J. Acoust. Soc. Am., 105:3219–3230, 1999.

    Article  ADS  Google Scholar 

  8. P. Gerstoft. Inversion of seismo-acoustic data using genetic algorithms and a posteriori probability distributions. J. Acoust. Soc. Am., 95:770–782, 1994.

    Article  ADS  Google Scholar 

  9. P. Gerstoft. Inversion of acoustic data using a combination of genetic algorithms and the Gauss-Newton approach. J. Acoust. Soc. Am., 97:2181–2190, 1995.

    Article  ADS  Google Scholar 

  10. P. Gerstoft and D.F. Gingras. Parameter estimation using multi-frequency, range-dependent acoustic data in shallow water. J. Acoust. Soc. Am., 99:2839–2850, 1996.

    Article  ADS  Google Scholar 

  11. P. Gerstoft and C.F. Mecklenbrauker. Ocean acoustic inversion with estimation of a posteriori probability distributions. J. Acoust. Soc. Am., 104:808–819, 1998.

    Article  ADS  Google Scholar 

  12. E.L. Hamilton. Geoacoustic modeling of the sea floor. J. Acoust. Soc. Am., 68:1313–1340, 1980.

    Article  ADS  Google Scholar 

  13. C.E. Lindsay and N.R. Chapman. Matched field inversion for geoacoustic model parameters using adaptive simulated annealing. IEEE J. Ocean. Eng., 18:224–231, 1993.

    Article  Google Scholar 

  14. W. Menke. Geophysical Data Analysis: Discrete Inverse Theory. Academic Press, New York, 1984.

    Google Scholar 

  15. K. Mosegaard and A. Tarantola. Monte Carlo sampling of solutions to inverse problems. J. Geophys. Res., 100:12431–12447, 1995.

    Article  ADS  Google Scholar 

  16. D.H. Rothman. Nonlinear inversion, statistical mechanics and residual static corrections. Geophysics, 50:2784–2796, 1985.

    Article  ADS  Google Scholar 

  17. R.Y. Rubinstein. Simulation and the Monte Carlo Method. Wiley, New York, 1981.

    Book  MATH  Google Scholar 

  18. M.K. Sen and P.L. Stoffa. Nonlinear one-dimensional seismic waveform inversion using simulated annealing. Geophysics, 56:1624–1638, 1991.

    Article  ADS  Google Scholar 

  19. M.K. Sen and P.L. Stoffa. Bayesian inference, Gibbs sampler and uncertainty estimation in geophysical inversion. Geophys. Prospect., 44:313–350, 1996.

    Article  ADS  Google Scholar 

  20. A. Tarantola. Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation. Elsevier Science, Amsterdam, 1987.

    MATH  Google Scholar 

  21. A. Tolstoy. Using matched field processing to estimate shallow-water bottom properties from shot data in the Mediterranean Sea. IEEE J. Ocean. Eng., 21:471–479, 1996.

    Article  Google Scholar 

  22. E.K. Westwood and C.T. Tindle. Shallow-water time series simulation using ray theory. J. Acoust. Soc. Am., 81:1752–1761, 1987.

    Article  ADS  Google Scholar 

  23. E.K. Westwood and P.J. Vidmar. Eigenray finding and time series simulation in a layered-bottom ocean. J. Acoust. Soc. Am., 81:912–924, 1987.

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chapman, N.R., Jaschke, L. (2001). Freeze Bath Inversion for Estimation of Geoacoustic Parameters. In: Taroudakis, M.I., Makrakis, G.N. (eds) Inverse Problems in Underwater Acoustics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3520-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3520-8_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2920-4

  • Online ISBN: 978-1-4757-3520-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics