Polymer-Based Compounds for Targeted Imaging

  • Chun Li
  • Edward F. Jackson


The ultimate aim of all targeted imaging is to achieve a large contrast enhancement at the diseased sites that offers not only anatomical but also functional and physicobiochemical information noninvasively. Thus, in this respect, targeted imaging is very similar to drug targeting where the goal is to treat the diseased condition without harming the host, that is, to achieve a large therapeutic index. Depending on the size of contrast agents, two distinct approaches can be envisaged: (1) the agent has low molecular weight (usually <1000 Da); (2) the agent has high molecular weight, or large size, and localization of the agent to the tumor is mediated by carriers that include particulate, liposomal, and macromolecular contrast agents. The latter approach can be further subclassified into passive targeting and active targeting.


Contrast Agent Tumor Uptake Magn Reson Image Magnetic Resonance Imaging Contrast Agent Passive Target 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Li C, Kan Z-X, Yang DJ, et al. Preparation, characterization, and evaluation of ioxilan carbonate particles for computed tomography contrast enhancement of the liver. Invest Radiol 1994; 29(11):1006–1013.PubMedCrossRefGoogle Scholar
  2. 2.
    Ivancev K, Lunderquist A, Isaksson A, et al. Clinical trials with a new iodinated lipid emulsion for computed tomography of the liver. Acta Radiol 1989;30:449–457.PubMedCrossRefGoogle Scholar
  3. 3.
    Gerlowski LE, Jain RK. Microvascular permeability of normal and neoplastic tissues. Microvasc Res 1986;31:288–305.PubMedCrossRefGoogle Scholar
  4. 4.
    Maeda H, Matsumura Y. Tumoritropic and lymphotropic principles of macromolecular drugs. Crit Rev Ther Drug Carrier Syst 1989;6:193–210.PubMedGoogle Scholar
  5. 5.
    Maeda H. SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv Drug Delivery Rev 1991;6: 181–193.CrossRefGoogle Scholar
  6. 6.
    Vasey PA, Kaye SB, Morrison R, et al. Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxylpropyl)methacrylamide copolymer doxorubicin] : first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Clin Cancer Res 1999;5:83–94.PubMedGoogle Scholar
  7. 7.
    Li C, Yu D-F, Newman RA, et al. Complete regression of well-established tumors using a novel water-soluble poly(L-glutamic acid)paclitaxel conjugate. Cancer Res 1998;58:2404–2409.PubMedGoogle Scholar
  8. 8.
    Li C, Price JE, Milas L, et al. Antitumor activity of poly(L-glutamic acid)-paclitaxel on syngeneic and xenografted tumors. Clin Cancer Res 1999; 5:891–897.PubMedGoogle Scholar
  9. 9.
    Strich G, Hagan PL, Gerber KH, et al. Tissue distribution and magnetic resonance spin lattice relaxation effects of gadolinium-DTPA. Radiology 1985;154:723–726.PubMedGoogle Scholar
  10. 10.
    Brasch R. New directions in the development of MR imaging contrast media. Radiology 1992; 183:1–11.PubMedGoogle Scholar
  11. 11.
    Wikstrom MG, Moseley ME, White DL, et al. Contrast-enhanced MRI of tumors: comparison of Gd-DTPA and a macromolecular agent. Invest Radiol 1989;24:609–615.PubMedCrossRefGoogle Scholar
  12. 12.
    Bogdanov AA, Callahan RJ, Wilkinson RA, et al. Synthetic copolymer kit for radionuclide bloodpool imaging. J Nucl Med 1994;35:1880–1886.PubMedGoogle Scholar
  13. 13.
    Bogdanov AA, Weissleder R, Brady TJ. Long circulating blood pool imaging agents. Advanced Drug Delivery Rev 1995;16:335–348.CrossRefGoogle Scholar
  14. 14.
    Doucet D, Meyer D, Chambon C, Bonnemain B. Blood-pool X-ray contrast agents: evaluation of a new iodinated polymer. Invest Radiol 1991; 26:S53-S54.CrossRefGoogle Scholar
  15. 15.
    Revel D, Chambon C, Havard PH, et al. Iodinated polymer as a blood-pool contrast agent: computed tomography evaluation in rabbits. Invest Radiol 1991;26:S57–S59.CrossRefGoogle Scholar
  16. 16.
    Osborne MP, Payne JH, Richardson VJ, et al. The preoperative detection of axilliary lymph node metastases in breast cancer by isotope imaging. Br J Surg 1983;70:141–144.PubMedCrossRefGoogle Scholar
  17. 17.
    Harika L, Weissleder R, Poss K, et al. MR lymphography with a lymphotropic T1-type MR contrast agent: Gd-DTPA-PGM. Magn Reson Med 1995;33:88–92.PubMedCrossRefGoogle Scholar
  18. 18.
    Schumann-Giampieri G, Schmit-Wilich H, Frenzel T, et al. In vivo and in vitro evaluation of Gd-DTPA-polylysine as a macromolecular contrast agent for magnetic resonance imaging. Invest Radiol 1991;26:696–974.CrossRefGoogle Scholar
  19. 19.
    Bagnodav AA, Weissleder R, Frank HW, et al. A new macromolecule as a contrast agent for MR angiography: preparation, properties, and animal studies. Radiology 1993;187:701–706.Google Scholar
  20. 20.
    Schmiedl U, Ogan M, Paajanen H, et al. Albumin labeled with Gd-DTPA as an intravascular, blood pool-enhancing agent for MR imaging: biodistribution and imaging studies. Radiology 1987;162:205–210.PubMedGoogle Scholar
  21. 21.
    Wang S-C, Wikstrom MG, White DL, et al. Evaluation of Gd-DTPA-labeled dextran as an intravascular MR contrast agent: imaging characteristics in normal rat tissues. Radiology 1990;175 :483–488.PubMedGoogle Scholar
  22. 22.
    Rebizak R, Schaefer M, Dellacherie E. Polymeric conjugates of Gd3+diethylenepentaacetic acid and dextran. 2. Influence of spacer arm length and conjugate molecular mass on the paramagnetic properties and some biological parameters. Bioconjugate Chem 1998;9:94–99.CrossRefGoogle Scholar
  23. 23.
    Wiener EC, Brechbiel MW, Brothers H, et al. Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn Reson Med 1994;31:1–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Weinmann HJ, Ebert W, Wagner S, et al. MR angio with special focus on blood pool agents. In: Proceedings of the IX International Workshop on Magnetic Resonance Angiography, Valencia, October 7–11,1997, pp 335–340.Google Scholar
  25. 25.
    Adam G, Neuerburg J, Spuntrup E, et al. 24-Gadolinium-cascade-polymer: a potential bloodpool contrast agent for MR imaging. J Magn Reson Imaging 1994;4:462–466.PubMedCrossRefGoogle Scholar
  26. 26.
    Keller KE, Henrichs PM, Hollister R, et al. High relaxivity linear Gd(DTPA)-polymer conjugates: the role of hydrophobic interactions. Magn Reson Med 1997;38:712–716.CrossRefGoogle Scholar
  27. 27.
    Ladd DL, Hollister R, Peng X, et al. Polymeric gadolinium chelate magnetic resonance imaging contrast agents: design, synthesis, and properties. Bioconjugate Chem 1999;10:361–370.CrossRefGoogle Scholar
  28. 28.
    Unger EC, Totty WG, Neufeld DM, et al. Magnetic resonance imaging using gadolinium labeled monocloncal antibody. Invest Radiol 1985;20:693–700.PubMedCrossRefGoogle Scholar
  29. 29.
    Anderson-Berg WT, Strand M, Lempert TE, et al. Nuclear magnetic resonance and gamma camera tumor imaging using Gd-labeled monocloncal antibodies. J Nucl Med 1986;27:829–833.PubMedGoogle Scholar
  30. 30.
    Torchilin VP, Klibanov AL, Nossiff ND, et al. Monoclonal antibody modification with chelatelinked high-molecular-weight polymers: major increases in polyvalent cation binding without loss of antigen binding. Hybridoma 1987;6: 229–240.PubMedCrossRefGoogle Scholar
  31. 31.
    Shreve P, Aisen AM. Monoclonal antibodies labeled with polymeric paramagnetic ion chelates. Magn Reson Med 1986;3:336–340.PubMedCrossRefGoogle Scholar
  32. 32.
    Kornguth SE, Turski PA, Perman WH, et al. Magnetic resonance imaging of gadoliniumlabeled monocloncal antibody polymer directed at human T lymphocytes implanted in canine brain. J Neurosurg 1987;66:898–906.PubMedCrossRefGoogle Scholar
  33. 33.
    Wiener EC, Konda S, Shadron A, et al. Targeting dendrimer-chelates to tumors and tumor cells expressing the high-affinity folate receptor. Invest Radiol 1997;32(12):748–754.PubMedCrossRefGoogle Scholar
  34. 34.
    Orang-Khadivi K, Pierce BL, Ollom CM, et al. New magnetic resonance imaging technique for the detection of breast cancer. Breast Cancer Res Treat 1994;32:119–135.PubMedCrossRefGoogle Scholar
  35. 35.
    Neuwelt EA, Remsen LG, McCormick CI, et al. Magnetic resonance imaging of monocrystalline iron oxide nanocompound conjugated carcinoma specific monocloncal antibody in a rodent model of intracerebral human lung cancer: the potential for knifeless diagnosis. Proc Am Assoc Cancer Res 1995;36:483.Google Scholar
  36. 36.
    Khaw BA, Kilbanov A, O’Donnell SM, et al. Gamma imaging with negatively chargemodified monoclonal antibody: modification with synthetic polymers. J Nucl Med 1991;32: 1742–1751.PubMedGoogle Scholar
  37. 37.
    Wang TST, Fawwaz RA, Alderson PO. Reduced hepatic accumulation of radiolabeled monoclonal antibodies with indium-111 thioether-poly-L-lysine DTPA-monoclonal antibody-TP41.2F(ab′)2. J Nucl Med 1992;33: 570–575.PubMedGoogle Scholar
  38. 38.
    Su MY, Muhler A, Lao X, et al. Tumor characterization with dynamic contrast-enhanced MRI using MR contrast agents of various molecular weights. Magn Reson Med 1998;39:259–269.PubMedCrossRefGoogle Scholar
  39. 39.
    Folkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 1990;82:4–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Frouge C, Guinebretiere JM, Contesso G, et al. Correlation between contrast enhancement in dynamic magnetic resonance imaging of the breast and tumor angiogenesis. Invest Radiol 1994;29:1043–1049.PubMedCrossRefGoogle Scholar
  41. 41.
    Buadu LD, Murakami J, Murayama S, et al. Breast lesions: correlation of contrast medium enhancement patterns on MR images with histopathologic findings and tumor angiogenesis. Radiology 1996;200:639–649.PubMedGoogle Scholar
  42. 42.
    Buckley DL, Drew PJ, Murrurakis S, et al. Microvessel density in invasive breast cancer assessed by dynamic Gd-DTPA enhanced MRI. J Magn Reson Imaging 1997;7:461–464.PubMedCrossRefGoogle Scholar
  43. 43.
    Shames DM, Kuwatsuru R, Vexler V, et al. Measurement of capillary permeability to macromolecules by dynamic magnetic resonance imaging: a quantitative noninvasive technique. Magn Reson Med 1993;29:616–622.PubMedCrossRefGoogle Scholar
  44. 44.
    van Dijke CF, Brasch RC, Roberts TPL, et al. Mammary carcinoma model: correlation of macromolecular contrast-enhanced MR imaging characterizations of tumor microvasculature and histologic capillary density. Radiology 1996;198: 813–818.PubMedGoogle Scholar
  45. 45.
    Daldrup H, Shames DM, Wendland M, et al. Correlation of dynamic contrast enhanced MR imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media. AJR 1998;171:941–949.PubMedCrossRefGoogle Scholar
  46. 46.
    Su MY, Wang Z, Carpenter PM, et al. Characterization of N-ethyl-N-nitrosourea-induced malignant and benign breast tumors in rats by using three MR contrast agents. J Magn Reson Imaging 1999;9920:177–186.CrossRefGoogle Scholar
  47. 47.
    Prim MV, Perkins AC, Duncan R, et al. Targeting of N-(2-hydroxylpropyl)methacrylamide copolymer-doxyrubicin conjugate to the hepatocyte galactose-receptor in mice: visualization and quantification by gamma scintigraphy as a basis for clinical targeting studies. J Drug Targeting 1993;1:125–131.CrossRefGoogle Scholar
  48. 48.
    Prim MV, Perkins AC, Strohalm J, et al. Gamma scintigraphy of the biodistribution of 123I-labeled N-(2-hydroxylpropyl)methacrylamide copolmer-doxyrubicin conjugates in mice with transplanted melanoma and mammary carcinoma. J Drug Targeting 1996;3: 375–385.CrossRefGoogle Scholar
  49. 49.
    Li C, Newman RA, Wu Q-P, et al. Biodistribution of paclitaxel and poly (L-glutamic-acid)-paclitaxel conjugates in mice with ovarian OCa-1 tumor. Cancer Chemother Pharmacol, in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Chun Li
  • Edward F. Jackson

There are no affiliations available

Personalised recommendations