Skip to main content

Antibodies for Targeted Imaging: Properties and Radiolabeling

  • Chapter
Targeted Molecular Imaging in Oncology

Abstract

Radioimmunodetection has shown great promise as a means of whole-body imaging in patients with various malignant neoplasms. Specificity of the antibody to antigen is a distinguished property of this method. Antibodies used for imaging are being applied for radioimmunotherapy, although effective treatment of solid tumors is still difficult. Recent advances in biotechnology have made possible the production of human antibodies and could prevent immune response. In this chapter, characteristics of antibodies and their fragments and radiolabeling for radioimmunodetection are briefly summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pressman D, Keighley G. The zone of activity of antibodies as determined by the use of radioactive tracers: the zone of activity of nephrotoxic anti-kidney serum. J Immunol 1948;59:141.

    PubMed  CAS  Google Scholar 

  2. Goldenberg DM, DeLand F, Kim E, et al. Use of radiolabeled antibodies to carcinoembryonic antigen for the detection and localization of diverse cancers by external photoscanning. N Engl J Med 1978;298:1384–1388.

    Article  PubMed  CAS  Google Scholar 

  3. Mach JP, Carrel S, Forni M, et al. Tumor localization of radiolabeled antibodies against carcinoembryonic antigen in patients with carcinoma: a critical evaluation. N Engl J Med 1980;303:5–10.

    Article  PubMed  CAS  Google Scholar 

  4. Kohler GP, Milstein C. Continuous cultures of fused cells secreting antibody of predetermined specificity. Nature (Lond) 1975;256:495–497.

    Article  CAS  Google Scholar 

  5. Mach JP, Buchegger F, Forni M. Use of radiolabeled monoclonal anti-CEA antibodies for the detection of human carcinomas by external photoscanning and tomoscintigraphy. Immunol Today 1981;2:239–249.

    Article  Google Scholar 

  6. Piro LD, White CA, Grillo-Lopez AJ, et al. Extended Rituximab (anti-CD20 monoclonal antibody) therapy for relapsed or refractory lowgrade or follicular non-Hodgkin’s lymphoma. Ann Oncol 1999;10(6):655–661.

    Article  PubMed  CAS  Google Scholar 

  7. Berinstein NL, Grillo-Lopez AJ, White CA, et al. Association of serum Rituximab (IDEC-C2B8) concentration and anti-tumor response in the treatment of recurrent low-grade or follicular non-Hodgkin’s lymphoma. Ann Oncol 1998; 9(9):995–1001.

    Article  PubMed  CAS  Google Scholar 

  8. Grillo-Lopez AJ, White CA, Varns C, et al. Overview of the clinical development of rituximab: first monoclonal antibody approved for the treatment of lymphoma. Semin Oncol 1999; 26:66–73.

    PubMed  CAS  Google Scholar 

  9. Czuczman MS, Grillo-Lopez AJ, White CA, et al. Treatment of patients with low-grade B-cell lymphoma with the combination of chimeric anti-CD20 monoclonal antibody and CHOP chemotherapy. J Clin Oncol 1999;17(1):268–276.

    PubMed  CAS  Google Scholar 

  10. Witzig TE, White CA, Wiseman GA, et al. Phase I/II trial of IDEC-Y2B8 radioimmunotherapy for treatment of relapsed or refractory CD20(+) B-cell non-Hodgkin’s lymphoma. J Clin Oncol 1999;17 (12) :3793–3803.

    PubMed  CAS  Google Scholar 

  11. Hoogenboom HR, Marks JD, Griffiths AD, et al. Building antibodies from their genes. Immunol Rev 1992;130:41–68.

    Article  PubMed  CAS  Google Scholar 

  12. Yoo TM, Chang HK, Choi CW, et al. Technetium99m labeling and biodistribution of anti-TAC disulfide-stabilized Fv fragment. J Nucl Med 1997;38(2):294–300.

    PubMed  CAS  Google Scholar 

  13. Yokota T, Milenic DE, Whitlow M, et al. Microautoradiographic analysis of the normal organ distribution of radioiodinated single-chain Fv and other immunoglobulin forms. Cancer Res 1993;53 (16) :3776–3783.

    PubMed  CAS  Google Scholar 

  14. Yokota T, Milenic DE, Whitlow M, et al. Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res 1992;52(12):3402–3408.

    PubMed  CAS  Google Scholar 

  15. Oriuchi N, Watanabe N, Kanda H, et al. Antibody-dependant difference in biodistribution of monoclonal antibodies in animal models and humans. Cancer Immunol Immunother 1998;46:311–317.

    Article  PubMed  CAS  Google Scholar 

  16. Shawler DL, Bartholomew RM, Smith LM, et al. Human immune response to multiple injections of murine monoclonal IgG. J Immunol 1985; 135:1530–1535.

    PubMed  CAS  Google Scholar 

  17. Scott AM, Welt S. Antibody-based immunological therapies. Curr Opin Immunol 1997;9:717–722.

    Article  PubMed  CAS  Google Scholar 

  18. Hunter WM, Greenwood FC. Preparation of iodine-131-labeled human growth hormone of high specific activity. Nature (Lond) 1962;194: 495–496.

    Article  CAS  Google Scholar 

  19. Huber RE, Edwards LA, Carne TJ. Studies on the mechanism of the iodination of tyrosine by lactoperoxidase. J Biol Chem 1989;264:1381–1386.

    PubMed  CAS  Google Scholar 

  20. Kung HF, Alavi A, Chang W, et al. In vivo SPECT imaging of CNS D-2 dopamine receptors: initial studies with iodine-123 IBZM in humans. J Nucl Med 1996;31:573–579.

    Google Scholar 

  21. Zalutsky MR, Narula AS. A method for the radiohalogenation of proteins resulting in decreased thyroid uptake of radioiodine. Appl Radiat Isot 1987;38:1051–1055.

    Article  CAS  Google Scholar 

  22. Rodwell JD, Alvarez VL, Lee C, et al. Sitespecific covalent modification of monoclonal antibodies: in vitro and in vivo evaluations. Proc Natl Acad Sci USA 1986;83:2632–2636.

    Article  PubMed  CAS  Google Scholar 

  23. Franz J, Freeman GM, Barefield EK, et al. Labeling of antibodies with 64Cu using a conjugate containing a macrocyclic amine chelating agent. Nucl Med Biol 1987;14:479–484.

    CAS  Google Scholar 

  24. Schwarz A, Steinstrasser A. A novel approach to technetium-99m monoclonal antibodies. J Nucl Med 1987;28:721.

    Google Scholar 

  25. Oriuchi N, Endo K, Watanabe N, et al. Semiquantitative SPECT tumor uptake of technetium-99m-labeled anti-CEA monoclonal antibody in colorectal tumor. J Nucl Med 1995; 36:679–683.

    PubMed  CAS  Google Scholar 

  26. Visser GW, Gerretsen M, Herscheid JD, et al. Labeling of monoclonal antibodies with rhenium-186 using the MAG3 chelate for radioimmunotherapy of cancer: a technical protocol. J Nucl Med 1993;34(11):1953–1963.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Oriuchi, N., Yang, D.J. (2001). Antibodies for Targeted Imaging: Properties and Radiolabeling. In: Kim, E.E., Yang, D.J. (eds) Targeted Molecular Imaging in Oncology. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3505-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3505-5_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-3507-9

  • Online ISBN: 978-1-4757-3505-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics