Antibodies for Targeted Imaging: Properties and Radiolabeling

  • Noboru Oriuchi
  • David J. Yang


Radioimmunodetection has shown great promise as a means of whole-body imaging in patients with various malignant neoplasms. Specificity of the antibody to antigen is a distinguished property of this method. Antibodies used for imaging are being applied for radioimmunotherapy, although effective treatment of solid tumors is still difficult. Recent advances in biotechnology have made possible the production of human antibodies and could prevent immune response. In this chapter, characteristics of antibodies and their fragments and radiolabeling for radioimmunodetection are briefly summarized.


Target Image Beta Emission Murine Antibody Single Photon Emission Compute Tomogra Intact Antibody 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pressman D, Keighley G. The zone of activity of antibodies as determined by the use of radioactive tracers: the zone of activity of nephrotoxic anti-kidney serum. J Immunol 1948;59:141.PubMedGoogle Scholar
  2. 2.
    Goldenberg DM, DeLand F, Kim E, et al. Use of radiolabeled antibodies to carcinoembryonic antigen for the detection and localization of diverse cancers by external photoscanning. N Engl J Med 1978;298:1384–1388.PubMedCrossRefGoogle Scholar
  3. 3.
    Mach JP, Carrel S, Forni M, et al. Tumor localization of radiolabeled antibodies against carcinoembryonic antigen in patients with carcinoma: a critical evaluation. N Engl J Med 1980;303:5–10.PubMedCrossRefGoogle Scholar
  4. 4.
    Kohler GP, Milstein C. Continuous cultures of fused cells secreting antibody of predetermined specificity. Nature (Lond) 1975;256:495–497.CrossRefGoogle Scholar
  5. 5.
    Mach JP, Buchegger F, Forni M. Use of radiolabeled monoclonal anti-CEA antibodies for the detection of human carcinomas by external photoscanning and tomoscintigraphy. Immunol Today 1981;2:239–249.CrossRefGoogle Scholar
  6. 6.
    Piro LD, White CA, Grillo-Lopez AJ, et al. Extended Rituximab (anti-CD20 monoclonal antibody) therapy for relapsed or refractory lowgrade or follicular non-Hodgkin’s lymphoma. Ann Oncol 1999;10(6):655–661.PubMedCrossRefGoogle Scholar
  7. 7.
    Berinstein NL, Grillo-Lopez AJ, White CA, et al. Association of serum Rituximab (IDEC-C2B8) concentration and anti-tumor response in the treatment of recurrent low-grade or follicular non-Hodgkin’s lymphoma. Ann Oncol 1998; 9(9):995–1001.PubMedCrossRefGoogle Scholar
  8. 8.
    Grillo-Lopez AJ, White CA, Varns C, et al. Overview of the clinical development of rituximab: first monoclonal antibody approved for the treatment of lymphoma. Semin Oncol 1999; 26:66–73.PubMedGoogle Scholar
  9. 9.
    Czuczman MS, Grillo-Lopez AJ, White CA, et al. Treatment of patients with low-grade B-cell lymphoma with the combination of chimeric anti-CD20 monoclonal antibody and CHOP chemotherapy. J Clin Oncol 1999;17(1):268–276.PubMedGoogle Scholar
  10. 10.
    Witzig TE, White CA, Wiseman GA, et al. Phase I/II trial of IDEC-Y2B8 radioimmunotherapy for treatment of relapsed or refractory CD20(+) B-cell non-Hodgkin’s lymphoma. J Clin Oncol 1999;17 (12) :3793–3803.PubMedGoogle Scholar
  11. 11.
    Hoogenboom HR, Marks JD, Griffiths AD, et al. Building antibodies from their genes. Immunol Rev 1992;130:41–68.PubMedCrossRefGoogle Scholar
  12. 12.
    Yoo TM, Chang HK, Choi CW, et al. Technetium99m labeling and biodistribution of anti-TAC disulfide-stabilized Fv fragment. J Nucl Med 1997;38(2):294–300.PubMedGoogle Scholar
  13. 13.
    Yokota T, Milenic DE, Whitlow M, et al. Microautoradiographic analysis of the normal organ distribution of radioiodinated single-chain Fv and other immunoglobulin forms. Cancer Res 1993;53 (16) :3776–3783.PubMedGoogle Scholar
  14. 14.
    Yokota T, Milenic DE, Whitlow M, et al. Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res 1992;52(12):3402–3408.PubMedGoogle Scholar
  15. 15.
    Oriuchi N, Watanabe N, Kanda H, et al. Antibody-dependant difference in biodistribution of monoclonal antibodies in animal models and humans. Cancer Immunol Immunother 1998;46:311–317.PubMedCrossRefGoogle Scholar
  16. 16.
    Shawler DL, Bartholomew RM, Smith LM, et al. Human immune response to multiple injections of murine monoclonal IgG. J Immunol 1985; 135:1530–1535.PubMedGoogle Scholar
  17. 17.
    Scott AM, Welt S. Antibody-based immunological therapies. Curr Opin Immunol 1997;9:717–722.PubMedCrossRefGoogle Scholar
  18. 18.
    Hunter WM, Greenwood FC. Preparation of iodine-131-labeled human growth hormone of high specific activity. Nature (Lond) 1962;194: 495–496.CrossRefGoogle Scholar
  19. 19.
    Huber RE, Edwards LA, Carne TJ. Studies on the mechanism of the iodination of tyrosine by lactoperoxidase. J Biol Chem 1989;264:1381–1386.PubMedGoogle Scholar
  20. 20.
    Kung HF, Alavi A, Chang W, et al. In vivo SPECT imaging of CNS D-2 dopamine receptors: initial studies with iodine-123 IBZM in humans. J Nucl Med 1996;31:573–579.Google Scholar
  21. 21.
    Zalutsky MR, Narula AS. A method for the radiohalogenation of proteins resulting in decreased thyroid uptake of radioiodine. Appl Radiat Isot 1987;38:1051–1055.CrossRefGoogle Scholar
  22. 22.
    Rodwell JD, Alvarez VL, Lee C, et al. Sitespecific covalent modification of monoclonal antibodies: in vitro and in vivo evaluations. Proc Natl Acad Sci USA 1986;83:2632–2636.PubMedCrossRefGoogle Scholar
  23. 23.
    Franz J, Freeman GM, Barefield EK, et al. Labeling of antibodies with 64Cu using a conjugate containing a macrocyclic amine chelating agent. Nucl Med Biol 1987;14:479–484.Google Scholar
  24. 24.
    Schwarz A, Steinstrasser A. A novel approach to technetium-99m monoclonal antibodies. J Nucl Med 1987;28:721.Google Scholar
  25. 25.
    Oriuchi N, Endo K, Watanabe N, et al. Semiquantitative SPECT tumor uptake of technetium-99m-labeled anti-CEA monoclonal antibody in colorectal tumor. J Nucl Med 1995; 36:679–683.PubMedGoogle Scholar
  26. 26.
    Visser GW, Gerretsen M, Herscheid JD, et al. Labeling of monoclonal antibodies with rhenium-186 using the MAG3 chelate for radioimmunotherapy of cancer: a technical protocol. J Nucl Med 1993;34(11):1953–1963.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Noboru Oriuchi
  • David J. Yang

There are no affiliations available

Personalised recommendations