Skip to main content

Radiopharmaceuticals for Tumor-Targeted Imaging: Overview

  • Chapter
Targeted Molecular Imaging in Oncology

Abstract

Improvement of scintigraphic tumor diagnosis, prognosis, planning, and monitoring of cancer treatment is clearly determined by development of more tumor-specific radiopharmaceuticals. Application of molecular targets for cancer imaging, therapy, and prevention are the major focus of research projects. Radionuclide imaging modalities (positron emission tomography, PET; single photon emission computed tomography, SPECT) are diagnostic cross-sectional imaging techniques that map the location and concentration of radionuclidelabeled radiotracers. Although computed tomography (CT) and magnetic resonance imaging (MRI) provide considerable anatomical information about the location and the extent of tumors, these imaging modalities cannot adequately differentiate invasive lesions from edema, radiation necrosis, or gliosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brock CS, Meikle SR, Price P. Does 18F-fluorodeoxyglucose metabolic imaging of tumors benefit oncology? Eur J Nucl Med 1997;24:691–705.

    PubMed  CAS  Google Scholar 

  2. Goldsmith SJ. Receptor imaging: competitive or complementary to antibody imaging. Semin Nucl Med 1997;27:85–93.

    Article  PubMed  CAS  Google Scholar 

  3. Mathias CJ, Hubers D, Trump DP, et al. Synthesis of 99mTc-DTPA-folate and preliminary evaluation as a folate-receptor-targeted radiopharmaceutical. J Nucl Med 1997;38:87P (abstract).

    Google Scholar 

  4. Davison A, Jones AG, Orvig C, et al. A new class of oxotechnetium (+5) chelate complexes containing a TcO N252 core. Inorg Chem 1980; 20:1629–1632.

    Article  Google Scholar 

  5. Verbruggen AM, Nosco DL, Van Nerom CG, et al. 99mTc-L,L-ethylenedicysteine: a renal imaging agent. I. Labeling and evaluation in animals. J Nucl Med 1992;33:551–557.

    PubMed  CAS  Google Scholar 

  6. Van Nerom CG, Bormans GM, De Roo MJ, et al. First experience in healthy volunteers with 99mTc-L,L-ethylenedicysteine, a new renal imaging agent. Eur J Nucl Med 1993;20:738–746.

    Article  PubMed  Google Scholar 

  7. Surma MJ, Wiewiora J, Liniecki J. Usefulness of 99mTc-N,N′-ethylene-1-dicysteine complex for dynamic kidney investigations. Nucl Med Commun 1994;15:628–635.

    Article  PubMed  CAS  Google Scholar 

  8. Moran JK. 99mTc-EC and other potential new agents in renal nuclear medicine. Semin Nucl Med 1999;29:91–101.

    Article  PubMed  CAS  Google Scholar 

  9. Ugur O, Serdengecti M, Karacalioglu O, et al. Comparison of 99mTc-EC and 99mTc-DTPA captopril scintigraphy to diagnose renal artery stenosis. Clin Nucl Med 1999;24:553–560.

    Article  PubMed  CAS  Google Scholar 

  10. Ilgan S, Yang DJ, Higuchi T, et al. 99mTc-ethylenedicysteine-folate: a new tumor imaging agent. Synthesis, labeling and evaluation in animals. Cancer Biother Radiopharm 1998;13: 427–435.

    Article  PubMed  CAS  Google Scholar 

  11. Zareneyrizi F, Yang DJ, Oh C-S, et al. Synthesis of 99mTc-ethylenedicysteine-colchicine for evaluation of antiangiogenic effect. Anti-Cancer Drugs 1999;10:685–692.

    Article  PubMed  CAS  Google Scholar 

  12. Fry DW, Nelson JM, Slintak V, et al. Biochemical and antiproliferative properties of 4-[ar(alk)ylamino]pyridopyrimidines, a new chemical class of potent and specific epidermal growth factor receptor tyrosine kinase inhibitor. Biochem Pharmacol 1997;54:877–887.

    Article  PubMed  CAS  Google Scholar 

  13. Yang SC, Fry KD, Grimm EA, et al. Successful combination immunotherapy for the generation in vivo of antitumor activity with anti-CD3, interleukin 2, and tumor necrosis factor alpha. Arch Surg 1990;125:220–225.

    Article  PubMed  CAS  Google Scholar 

  14. Miyake H, Tolcher A, Gleave ME. Antisense Bcl-2 oligodeoxynucleotides inhibit progression to androgen-independence after castration in the Shionogi tumor model. Cancer Res 1999; 59:4030–4034.

    PubMed  CAS  Google Scholar 

  15. Bertolini F, Paolucci M, Peccatori F, et al. Angiogenic growth factors and endostatin in nonHodgkin’s lymphoma. Br J Haematol 1999; 106(2):504–509.

    Article  PubMed  CAS  Google Scholar 

  16. Gasparini G. The rationale and future potential of angiogenesis inhibitors in neoplasia. Drugs 1999;58(1):17–38.

    Article  PubMed  CAS  Google Scholar 

  17. Cao Y. Therapeutic potentials of angiostatin in the treatment of cancer. Haematologica 1999; 84(7):643–650.

    PubMed  CAS  Google Scholar 

  18. Yamaguchi N, Anand-Apte B, Lee M, et al. Endostatin inhibits VEGF-induced endothelial cell migration and tumor growth independently of zinc binding. EMBO J 1999;18:4414–4423.

    Article  PubMed  CAS  Google Scholar 

  19. Bergers G, Javaherian K, Lo KM, et al. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 1999;284(5415):808–812.

    Article  PubMed  CAS  Google Scholar 

  20. Dhanabal M, Ramchandran R, Waterman MJ, et al. Endostatin induces endothelial cell apoptosis. J Biol Chem 1999;274(17):11721–11726.

    Article  PubMed  CAS  Google Scholar 

  21. Harris AL. Anti-angiogenesis therapy and strategies for integrating it with adjuvant therapy. Recent Results Cancer Res 1998;152:341–352.

    Article  PubMed  CAS  Google Scholar 

  22. Moulton KS, Heller E, Konerding MA, et al. Angiogenesis inhibitors endostatin or TNP-470 reduce intimal neovascularization and plaque growth in apolipoprotein E-deficient mice. Circulation 1999;99(13):1726–1732.

    Article  PubMed  CAS  Google Scholar 

  23. Ramchandran R, Dhanabal M, Volk R, et al. Antiangiogenic activity of restin, NC10 domain of human collagen XV: comparison to endostatin. Biochem Biophys Res Commun 1999; 255(3):735–739.

    Article  PubMed  CAS  Google Scholar 

  24. Szabo S, Sandor Z. The diagnostic and prognostic value of tumor angiogenesis. Eur J Surg Suppl 1998;582:99–103.

    PubMed  Google Scholar 

  25. O’Reilly MS, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997;88(2):277–285.

    Article  PubMed  Google Scholar 

  26. Gibaldi M. Regulating angiogenesis: a new therapeutic strategy. J Clin Pharmacol 1998;38(10): 898–903.

    Article  PubMed  CAS  Google Scholar 

  27. Zetter BR. Angiogenesis and tumor metastasis. Annu Rev Med 1998;49:407–424.

    Article  PubMed  CAS  Google Scholar 

  28. Lu MC. Antimitotic agents. In: Foye WO, ed. Cancer Chemotherapeutic Agents. Washington, DC: American Chemical Society 1995:345–368.

    Google Scholar 

  29. Goh EL, Pircher TJ, Lobie PE. Growth hormone promotion of tubulin polymerization stabilizes the microtubule network and protects against colchicine-induced apoptosis. Endocrinology 1998;139:4364–4372.

    Article  PubMed  CAS  Google Scholar 

  30. Wang TH, Wang HS, Ichijo H, et al. Microtubuleinterfering agents activate c-Jun N-terminal kinase/stress-activated protein kinase through both Ras and apoptosis signal-regulating kinase pathways. J Biol Chem 1998;273:4928–4936.

    Article  PubMed  CAS  Google Scholar 

  31. Rowinsky EK, Cazenave LA, Donehower RC. Taxol: a novel investigational antimicrotubule agent. J Natl Cancer Inst 1990;82(15):1247–1259.

    Article  PubMed  CAS  Google Scholar 

  32. Imbert TF. Discovery of podophyllotoxins. Biochimie (Paris) 1998;80:207–222.

    Article  CAS  Google Scholar 

  33. Inoue T, Li C, Yang DJ, et al. Evaluation of 111In-DTPA-paclitaxel scintigraphy to predict response on murine tumors to paclitaxel. Ann Nucl Med 1999;13(3):169–174.

    Article  PubMed  CAS  Google Scholar 

  34. Hall J. The oxygen effect and reoxygenation. In: Hall EJ, ed. Radiobiology for the Radiobiologist. Philadelphia: J Lippincott, 1988:137–160.

    Google Scholar 

  35. Bush S, Jenkins RDT, Allt WEC, et al. Definitive evidence for hypoxic cells influencing cure in cancer therapy. Br J Cancer 1978;37:302–306.

    Google Scholar 

  36. Gray H, Conger AD, Elbert M, et al. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 1953;26:638–648.

    Article  PubMed  CAS  Google Scholar 

  37. Dische S. A review of hypoxic-cell radiosensitization. Int J Radiat Oncol Biol Phys 1991;20: 147–152.

    Article  PubMed  CAS  Google Scholar 

  38. Gatenby A, Kessler HB, Rosenblum JS, et al. Oxygen distribution in squamous cell carcinoma metastases and its relationship to outcome of radiation therapy. Int J Radiat Oncol Biol Phys 1988;14:831–838.

    Article  PubMed  CAS  Google Scholar 

  39. Nordsmark M., Overgaard M, Overgaard J. Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol 1996;41: 31–39.

    PubMed  CAS  Google Scholar 

  40. Koh W- J, Rasey JS, Evans ML, et al. Imaging of hypoxia in human tumors with 18F-fluoromisonidazole. Int J Radiat Oncol Biol Phys 1992;22:199–212.

    Article  PubMed  CAS  Google Scholar 

  41. Valk ET, Mathis CA, Prados MD, et al. Hypoxia in human gliomas: demonstration by PET with [18F]fluoromisonidazole. J Nucl Med 1992;33: 2133–2137.

    PubMed  CAS  Google Scholar 

  42. Martin V, Caldwell JH, Rasey JS, et al. Enhanced binding of the hypoxic cell marker [18F]fluoromisonidazole in ischemic myocardium. J Nucl Med 1989;30:194–201.

    PubMed  CAS  Google Scholar 

  43. Rasey S, Nelson NJ, Chin L, et al. Characterization of the binding of labeled fluoromisonidazole in cells in vitro. Radiat Res 1990;122:301–308.

    Article  PubMed  CAS  Google Scholar 

  44. Yang J, Wallace S, Cherif A, et al. Development of F-18-labeled fluoroerythronitroimidazole as a PET agent for imaging tumor hypoxia. Radiology 1995;194:795–800.

    PubMed  CAS  Google Scholar 

  45. Rasey S, Koh WJ, Grieson JR, et al. Radiolabeled fluoromisonidazole as an imaging agent for tumor hypoxia. Int J Radiat Oncol Biol Phys 1989;17:985–991.

    Article  PubMed  CAS  Google Scholar 

  46. Hay MP, Wilson WR, Moselen JW, et al. Hypoxia-selective antitumor agents. Bis(nitroimidazolyl)alkanecarboxamides: a new class of hypoxia-selective cytotoxins and hypoxic cell radiosensitizers. J Med Chem 1994;37:381–391.

    Article  PubMed  CAS  Google Scholar 

  47. Cherif A, Yang DJ, Tansey W, et al. Synthesis of [18F]fluoromisonidazole. Pharm Res (NY) 1994;11:466–469.

    Article  CAS  Google Scholar 

  48. Britton KE, Granowska M. Imaging of Tumors, in Tomography in Nuclear Medicine. Proceedings of an International Symposium. Vienna: IAEA, 1996:91–105.

    Google Scholar 

  49. Krenning EP, Kwekkeboom DJ, Bakker WH, et al. Somatostatin receptor scintigraphy with 111InDTPA-D-Phe and 123I-Tyr-octretide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 1995;7:716–731.

    Google Scholar 

  50. Reubi JC, Krenning EP, Lamberts SWJ, et al. In vitro detection of somatostatin receptors in human tumors. Metabolism 1992;41:104–110.

    Article  PubMed  CAS  Google Scholar 

  51. Goldsmith SJ, Macapinlac H, O’Brien JP. Somatostatin receptor imaging in lymphoma. Semin Nucl Med 1995;25:262–271.

    Article  PubMed  CAS  Google Scholar 

  52. Virgolini I, Raderer M, Kurtaran A. Vasoactive intestinal peptide (VIP) receptor imaging in the localization of intestinal adenocarcinomas and endocrine tumors. N Engl J Med 1994;331: 1116–1121.

    Article  PubMed  CAS  Google Scholar 

  53. Westerhof GR, Jansen G, Emmerik NV, et al. Membrane transport of natural folates and antifolate compounds in murine L1210 leukemia cells: role of carrier- and receptor-mediated transport systems. Cancer Res 1991;51:5507–5513.

    PubMed  CAS  Google Scholar 

  54. Orr RB, Kreisler AR, Kamen BA. Similarity of folate receptor expression in UMSCC 38 cells to squamous cell carcinoma differentiation markers. J Natl Cancer Inst 1995;87:299–303.

    Article  PubMed  CAS  Google Scholar 

  55. Hsueh CT, Dolnick BJ. Altered folate-binding protein mRNA stability in KB cells grown in folate-deficient medium. Biochem Pharmacol 1993;45:2537–2545.

    Article  PubMed  CAS  Google Scholar 

  56. Weitman SD, Lark RH, Coney LR, et al. Distribution of folate GP38 in normal and malignant cell lines and tissues. Cancer Res 1992;52:3396–3400.

    PubMed  CAS  Google Scholar 

  57. Campbell IG, Jones TA, Foulkes WD, Trowsdale J. Folate-binding protein is a marker for ovarian cancer. Cancer Res 1991;51:5329–5338.

    PubMed  CAS  Google Scholar 

  58. Weitman SD, Weinberg AG, Coney LR, et al. Cellular localization of the folate receptor: potential role in drug toxicity and folate homeostasis. Cancer Res 1992;52:6708–6711.

    PubMed  CAS  Google Scholar 

  59. Holm J, Hansen SI, Hoier-Madsen M, et al. Folate receptor of human mammary adenocarcinoma. APMIS 1994;102:413–419.

    Article  PubMed  CAS  Google Scholar 

  60. Ross JF, Chaudhuri PK, Ratnam M. Differential regulation of folate receptor isoforms in normal and malignant tissue in vivo and in established cell lines. Cancer (Phila) 1994;73:2432–2443.

    Article  CAS  Google Scholar 

  61. Franklin WA, Waintrub M, Edwards D, et al. New anti-lung-cancer antibody cluster 12 reacts with human folate receptors present on adenocarcinoma. Int J Cancer Suppl 1994;8:89–95.

    Article  PubMed  CAS  Google Scholar 

  62. Weitman SD, Frazier KM, Kamen BA. The folate receptor in central nervous system malignancies of childhood. J Neuro-Oncol 1994;21:107–112.

    Article  CAS  Google Scholar 

  63. Ginobbi P, Geiser TA, Ombres D, et al. Folic acid-polylysine carrier improves efficacy of cmyc antisense oligonucleotides on human melanoma (M14) cells. Anticancer Res 1997; 17:29–35.

    PubMed  CAS  Google Scholar 

  64. Leamon CP, Low PS. Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proc Natl Acad Sci USA 1991;88:5572–5576.

    Article  PubMed  CAS  Google Scholar 

  65. Leamon CP, Low PS. Cytotoxicity of momordinfolate conjugates in cultured human cells. J Biol Chem 1992;267:24966–24971.

    PubMed  CAS  Google Scholar 

  66. Leamon CP, Pastan I, Low PS. Cytotoxicity of folate-pseudomonas exotoxin conjugates toward tumor cells. J Biol Chem 1993;268:24847–24854.

    PubMed  CAS  Google Scholar 

  67. Lee RJ, Low PS. Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J Biol Chem 1994;269:3198–3204.

    PubMed  CAS  Google Scholar 

  68. Wang S, Lee RJ, Cauchon G, et al. Delivery of antisense oligodeoxyribonucleotides against the human epidermal growth factor receptor into cultured KB cells with liposomes conjugated to folate via polyethylene glycol. Proc Natl Acad Sci USA 1995;92:3318–3322.

    Article  PubMed  CAS  Google Scholar 

  69. Canevari S, Miotti S, Bottero F, et al. Ovarian carcinoma therapy with monoclonal antibodies. Hybridoma 1993;12:501–507.

    Article  PubMed  CAS  Google Scholar 

  70. Bolhuis RLH, Lamers CHJ, Goey HS, et al. Adoptive immunotherapy of ovarian carcinoma with Bs-MAb targeted lymphocytes. A multicenter study. Int J Cancer 1992;7:78–81.

    CAS  Google Scholar 

  71. Patrick TA, Kranz DM, van Dyke TA, et al. Folate receptors as potential therapeutic targets in choroid plexus tumors of SV40 transgenic mice. J Neuro-Oncol 1997;32:111–123.

    Article  CAS  Google Scholar 

  72. Coney LR, Mezzanzanica D, Sanborn D, et al. Chimeric murine-human antibodies directed against folate binding receptor are efficient mediators of ovarian carcinoma cell killing. Cancer Res 1994;54:2448–2455.

    PubMed  CAS  Google Scholar 

  73. Kranz DM, Patrick TA, Brigle KE, et al. Conjugates of folate and anti-T- cell-receptor antibodyies specifically target folate-receptor-positive tumor cells for lysis. Proc Natl Acad Sci USA 1995;92:9057–9061.

    Article  PubMed  CAS  Google Scholar 

  74. Mathias CJ, Wang S, Lee RJ, et al. Tumorselective radiopharmaceutical targeting via receptor-mediated endocytosis of 67Gadeferoxamine-folate. J Nucl Med 1996;37:1003–1008.

    PubMed  CAS  Google Scholar 

  75. Wang S, Luo J, Lantrip DA, et al. Design and synthesis of [111In]DTPA-folate for use as a tumortargeted radiopharmaceutical. Bioconjugate Chem 1997;8:673–679.

    Article  CAS  Google Scholar 

  76. Wang S, Lee RJ, Mathias CJ, et al. Synthesis, purification, and tumor cell uptake of 67Gadeferoxamine-folate, a potential radiopharmaceutical for tumor imaging. Bioconjugate Chem 1996;7:56–62.

    Article  CAS  Google Scholar 

  77. Mathias CJ, Wang S, Waters DJ, et al. 111InDTPA-folate as a radiopharmaceutical for targeting tumor-associated folate binding protein. J Nucl Med 1997;38:133P (abstract).

    Google Scholar 

  78. Gangjee A, Mavandadi F, Kisliuk RL, et al. 2-Amino-4-oxo-5-substituted-pyrrolo [2,3-d]pyrimidines as nonclassical antifolate inhibitors of thymidylate synthase. J Med Chem 1996;39: 4563–4568.

    Article  PubMed  CAS  Google Scholar 

  79. Hara T, Kosaka N, Kishi H, et al. PET imaging of prostate cancer using 11C-choline. J Nucl Med 1998;39:990–995.

    PubMed  CAS  Google Scholar 

  80. Demeule M, Laplante A, Sepehr-Arae A, et al. Inhibition of P-glycoprotein by cyclosporin A analogues and metabolites. Biochem Cell Biol 1999;77:47–58.

    Article  PubMed  CAS  Google Scholar 

  81. Wester HJ, Herz M, Weber W, et al. Synthesis and radiopharmacology of O(2-[18F]fluoroethyl)-Ltyrosine for tumor imaging. J Nucl Med 1999; 40:205–212.

    PubMed  CAS  Google Scholar 

  82. Coenen HH, Stöcklin G. Evaluation of radiohalogenated amino acid analogues as potential tracers for PET and SPECT studies of protein synthesis. Radioisot Klin Forsch 1988;18:402–440.

    Google Scholar 

  83. Raderer M, Becherer A, Kurtaran A, et al. Comparison of iodine-123-vasoactive intestinal peptide receptor scintigraphy and 111In-CFT- 102 immunoscintigraphy. J Nucl Med 1996;37:1480–1487.

    PubMed  CAS  Google Scholar 

  84. Lambert SW, Bakker WH, Reubi JC, et al. Somatostatin receptor imaging in vivo localization of tumors with a radiolabeled somatostatin analog. J Steroid Biochem Mol Biol 1990;37: 1079–1082.

    Article  Google Scholar 

  85. Bakker WH, Krenning EP, Breeman WA, et al. Receptor scintigraphy with a radioiodinated somatostatin analogue: radiolabeling, purification, biologic activity and in vivo application in animals. J Nucl Med 1990;31:1501–1509.

    PubMed  CAS  Google Scholar 

  86. Stella VJ, Mathew AE. Derivatives of taxol, pharmaceutical compositions thereof and methods for preparation thereof. United States Patent 1990;4,960,790; October 2.

    Google Scholar 

  87. Butterfield DE, Fuji DK, Ladd DL, et al. Segmented chelating polymers as imaging and therapeutic agents. United States Patent 1998; 5,730,968; March 24.

    Google Scholar 

  88. Piper JR, McCaleb GS, Montgomery JA. A synthetic approach to poly(glutamyl) conjugates of methotrexate. J Med Chem 1983;26:291–294.

    Article  PubMed  CAS  Google Scholar 

  89. Mochizuki E, Inaki Y, Takemoto K. Synthesis of polyglutamates containing 5-substituted uracil moieties. Nucleic Acids Res 1985;16:121–124.

    CAS  Google Scholar 

  90. Dickinson HR, Hiltner A. Biodegradation of poly(α-amino acid) hydrogel. II. In vitro. J Biomed Mater Res 1981;15:591.

    Article  PubMed  CAS  Google Scholar 

  91. Lennon SV, Martin SJ, Cotter TG. Dosedependent induction of apoptosis in human tumor cell lines by widely diverging stimuli. Cell Prolif 1991;24:203–214.

    Article  PubMed  CAS  Google Scholar 

  92. Abrams MJ, Juweid M, Tenkate CI. 99mTc-human polyclonal IgG radiolabeled via the hydrazino nicotinamide derivative for imaging focal sites of infection in rats. J Nucl Med 1990;31:2022–2028.

    PubMed  CAS  Google Scholar 

  93. Blankenberg FG, Katsikis PD, Tait JF, et al. In vivo detection and imaging of phosphatidylserine expression during programmed cell death. Proc Natl Acad Sci USA 1998;95: 6349–6354.

    Article  PubMed  CAS  Google Scholar 

  94. Blankenberg FG, Katsikis PD, Tait JF, et al. Imaging of apoptosis (programmed cell death) with 99mTc annexin V. J Nucl Med 1999;40: 184–191.

    PubMed  CAS  Google Scholar 

  95. Tait JF, Smith C. Site-specific mutagenesis of annexin V: role of residues from Arg-200 to Lys207 in phospholipid binding. Arch Biochem Biophys 1991;288:141–144.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yang, D.J., Inoue, T., Kim, E.E. (2001). Radiopharmaceuticals for Tumor-Targeted Imaging: Overview. In: Kim, E.E., Yang, D.J. (eds) Targeted Molecular Imaging in Oncology. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3505-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3505-5_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-3507-9

  • Online ISBN: 978-1-4757-3505-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics