Skip to main content

Principles of Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy

  • Chapter

Abstract

The wide range of contrast that can be obtained using magnetic resonance imaging (MRI) has made it the modality of choice for the imaging of soft tissues. The mechanisms underlying the wide range of contrast depend on numerous intrinsic and extrinsic parameters. The inherent intrinsic parameters include, but are not limited to, proton density, spin-lattice (T1) relaxation times, spin-spin (T2) relaxation times, chemical environment, velocity, temperature, and the rate at which the protons diffuse. Extrinsic parameters, on the other hand, are those parameters that can be utilized to select which of the intrinsic parameters will be the primary contributor to image contrast. Such parameters include the choice of pulse sequence, the timing parameters for a given sequence, that is, the echo time (TE) and the repetition time (TR), various types of preparation pulses, and, for gradient-echo sequences, the flip angle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haacke EM, Brown RW, Thompson MR, Venkatesan R. Magnetic resonance imaging. Physical Principles and Sequence Design. New York: Wiley-Liss, 1999:914.

    Google Scholar 

  2. Jackson EF. Magnetic resonance imaging: physical principles to advanced applications. In: Kim EE, Jackson EF, eds. Molecular Imaging in Oncology. Berlin: Springer, 1999:17–45.

    Chapter  Google Scholar 

  3. Sanders JA. Magnetic resonance imaging. In: Orrison WWJ, Lewine JD, Sanders JA, Hartshorne MF, eds. Functional Brain Imaging. St. Louis: Mosby, 1995:145–186.

    Google Scholar 

  4. Elster AD. Questions and Answers in Magnetic Resonance Imaging. St Louis: Mosby, 1994.

    Google Scholar 

  5. Wehrli FW, Haacke EM. Principles of MR imaging. In: Potchen EJ, Haacke EM, Siebert JE, Gottschalk A, eds. Magnetic Resonance Angiography. St. Louis: Mosby, 1993:9–34.

    Google Scholar 

  6. Wehrli FW. Principles of magnetic resonance. In: Stark DD, Bradley WG, eds. Magnetic Resonance Imaging, Vol. 1. St. Louis: Mosby Year-Book, 1992:3–20.

    Google Scholar 

  7. Edelman RR, Kleefield J, Wentz KU, Atkinson DJ. Basic principles of magnetic resonance imaging. In: Edelman RR, Hesselink JR, eds. Clinical Magnetic Resonance Imaging. Philadelphia: Saunders, 1990:3–38.

    Google Scholar 

  8. Danielsen ER, Ross BD. Magnetic Resonance Spectroscopy Diagnosis of Neurological Diseases. New York: Dekker, 1999.

    Google Scholar 

  9. De Graaf RA. In Vivo NMR Spectroscopy: Principles and Techniques. New York: Wiley, 1999.

    Google Scholar 

  10. Jackson EF. Magnetic resonance spectroscopy: physical principles and applications. In: Kim EE, Jackson EF, eds. Molecular Imaging in Oncology. Berlin: Springer, 1999:47–70.

    Chapter  Google Scholar 

  11. Ross B, Michaelis T. Clinical applications of magnetic resonance spectroscopy. Magn Reson Q 1994;10:191–247.

    PubMed  CAS  Google Scholar 

  12. Cady EB. Clinical Magnetic Resonance Spectroscopy. New York: Plenum Press, 1990: 250–254.

    Book  Google Scholar 

  13. Wood ML, Bronskill MJ, Mulkern RV, Santyr GE. Physical MR desktop data. J Magn Reson Imaging 1994;3S:19–26.

    Google Scholar 

  14. Haase A, Frahm J, Hänicke W, Matthei D. 1H-NMR chemical shift selective (CHESS) imaging. Phys Med Biol 1985;30:341–344.

    Article  PubMed  CAS  Google Scholar 

  15. Potchen EJ, Haacke EM, Siebert JE, Gottschalk A. Magnetic Resonance Angiography. St. Louis: Mosby, 1993.

    Google Scholar 

  16. Prince MR, Grist TM, Debatin JF. 3D Contrast MR Angiography. New York: Springer-Verlag, 1997.

    Google Scholar 

  17. Hennig J, Nauerth A, Friedburg H. RARE imaging: a fast imaging method for clinical MR. Magn Reson Med 1986;3:823–833.

    Article  PubMed  CAS  Google Scholar 

  18. Constable RT, Anderson AW, Zhong J, Gore JC. Factors influencing contrast in fast spinecho MR imaging. Magn Reson Imaging 1992; 10:497–511.

    Article  PubMed  CAS  Google Scholar 

  19. Henkelman RM, Hardy PA, Bishop JE, Poon CS, Plewes DB. Why fat is bright in RARE and fast spin-echo imaging. J Magn Reson Imaging 1992;2:533–540.

    Article  PubMed  CAS  Google Scholar 

  20. Constable RT, Gore JC. The loss of small objects in variable TE imaging: implications for FSE, RARE, and EPI. Magn Reson Med 1992; 28:9–24.

    Article  PubMed  CAS  Google Scholar 

  21. Cho ZH, Jones JP, Singh M. Foundations of Medical Imaging. New York: Wiley, 1993.

    Google Scholar 

  22. Barentsz JO, Engelbrecht M, Jager GJ, et al. Fast dynamic gadolinium-enhanced MR imaging of urinary bladder and prostate cancer. J Magn Reson Imaging 1999;10:295–304.

    Article  PubMed  CAS  Google Scholar 

  23. Hawighorst H, Libicher M, Knopp MV, Moehler T, Kauffmann GW, van Kaick G. Evaluation of angiogenesis and perfusion of bone marrow lesions: role of semiquantitative and quantitative dynamic MRI. J Magn Reson Imaging 1999;10:286–294.

    Article  PubMed  CAS  Google Scholar 

  24. Mayr NA, Hawighorst H, Yuh WTC, Essig M, Magnotta VA, Knopp MV. MR microcirculation assessment in cervical cancer: correlations with histomorphological tumor markers and clinical outcome. J Magn Reson Imaging 1999; 10:267–276.

    Article  PubMed  CAS  Google Scholar 

  25. Knopp MV, Weiss E, Sinn HP, et al. Pathophysiologic basis of contrast enhancement in breast tumors. J Magn Reson Imaging 1999;10:260–266.

    Article  PubMed  CAS  Google Scholar 

  26. Reddick WE, Taylor JS, Fletcher BD. Dynamic MR imaging (DEMRI) of microcirculation in bone sarcoma. J Magn Reson Imaging 1999; 10:277–285.

    Article  PubMed  CAS  Google Scholar 

  27. Wong ET, Jackson EF, Hess K, et al. Correlations between dynamic MRI and outcome in patients with malignant glioma. Neurology 1998;50:777–781.

    Article  PubMed  CAS  Google Scholar 

  28. Buckley DL, Drew PJ, Mussurakis S, Monson JRT, Horsman A. Microvessel density in invasive breast cancer assessed by dynamic Gd-DTPA enhanced MRI. J Magn Reson Imaging 1997;7:461–464.

    Article  PubMed  CAS  Google Scholar 

  29. Hazle JD, Jackson EF, Schomer DF, Leeds NE. Dynamic imaging of intracranial lesions using fast spin-echo imaging: differentiation of brain tumors and treatment effects. J Magn Reson Imaging 1997;7:1084–1093.

    Article  PubMed  CAS  Google Scholar 

  30. den Boer J, Hoenderop R, Smink J, et al. Pharmacokinetic analysis of Gd-DTPA enhancement in dynamic three-dimensional MRI of breast lesions. J Magn Reson Imaging 1997;7:702–715.

    Article  Google Scholar 

  31. Griebel J, Mayr N, de Vries A, et al. Assessment of tumor microcirculation: a new role of dynamic contrast MR imaging. J Magn Reson Imaging 1997;7:111–119.

    Article  PubMed  CAS  Google Scholar 

  32. Hawighorst H, Knapstein P, Weikel W, et al. Cervical carcinoma: comparison of standard and pharmacokinetic MR imaging. Radiology 1996;201:531–539.

    PubMed  CAS  Google Scholar 

  33. Hawighorst H, Knapstein P, Schaeffer U, et al. Pelvic lesions in patients with treated cervical carcinoma: efficacy of pharmacokinetic analysis of dynamic MR images in distinguishing recurrent tumors from benign conditions. AJR 1996;166:401–408.

    Article  PubMed  CAS  Google Scholar 

  34. Buadu LD, Maurakami J, Murayama S, et al. Breast lesions: correlation of contrast medium enhancement patterns on MR images with histopathologic findings and tumor angiogenesis. Radiology 1996;200:639–649.

    PubMed  CAS  Google Scholar 

  35. Mussurakis S, Buckley D, Bowsley S, et al. Dynamic contrast-enhanced magnetic resonance imaging of the breast combined with pharmacokinetic analysis of gadolinium-DTPA uptake in the diagnosis of local recurrence of early stage breast carcinoma. Invest Radiol 1995;30:650–662.

    Article  PubMed  CAS  Google Scholar 

  36. Hoffmann U, Brix G, Knopp M, Hess T, Lorenz WJ. Pharmacokinetic mapping of the breast: a new method for dynamic MR mammography. Magn Reson Med 1995;33:506–514.

    Article  PubMed  CAS  Google Scholar 

  37. Tofts PS, Berkowitz B, Schnall MD. Quantitative analysis of dynamic Gd-DTPA enhancement in breast tumors using a permeability model. Magn Reson Med 1995;33:564–568.

    Article  PubMed  CAS  Google Scholar 

  38. Reddick WE, Bhargava R, Taylor JS, Meyer WH, Fletcher BD. Dynamic contrast-enhanced MR imaging evaluation of osteosarcoma response to neoadjuvant chemotherapy. J Magn Reson Imaging 1995;5:689–694.

    Article  PubMed  CAS  Google Scholar 

  39. Verstraete KL, De Deene Y, Roels H, Dierick A, Uyttendaele D, Kunnen M. Benign and malignant musculoskeletal lesions: dynamic contrast-enhanced MR imaging-parametric “first-pass” images depict tissue vascularization and perfusion. Radiology 1994;192:835–843.

    PubMed  CAS  Google Scholar 

  40. Knopp M, Brix G, Junkermann H, Sinn H. MR mammography with pharmacokinetic mapping for monitoring of breast cancer treatment during neoadjuvant therapy. Magn Reson Imaging 1994;2:633–658.

    CAS  Google Scholar 

  41. Turkat TJ, Klein BD, Polan RL, Richman R. Dynamic MR mammography: a technique for potentially reducing the biopsy rate for benign breast disease. J Magn Reson Imaging 1994; 4:563–568.

    Article  PubMed  CAS  Google Scholar 

  42. Kucharczyk W, Bishop JE, Plewes DB, Keller MA, George S. Detection of pituitary micro-adenomas: comparison of dynamic keyhole fast spin-echo, unenhanced, and conventional contrast-enhanced MR imaging. AJR 1994;163: 671–679.

    Article  PubMed  CAS  Google Scholar 

  43. Müller-Schimpfle M, Brix G, Layer G, et al. Recurrent rectal cancer: diagnosis with dynamic MR imaging. Radiology 1993;189:881–889.

    PubMed  Google Scholar 

  44. Hanna SL, Reddick WE, Parham DM, Gronemeyer SA, Taylor JS, Fletcher BD. Automated pixel-by-pixel mapping of dynamic contrast-enhanced MR images for evaluation of osteosarcoma response to chemotherapy: preliminary results. J Magn Reson Imaging 1993;3:849–853.

    Article  PubMed  CAS  Google Scholar 

  45. Nägele T, Petersen D, Klose U, et al. Dynamic contrast enhancement of intracranial tumors with snapshot-FLASH MR imaging. AJNR 1993;14:89–98.

    PubMed  Google Scholar 

  46. Tofts PS, Kermode AG. Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 1991;17: 357–367.

    Article  PubMed  CAS  Google Scholar 

  47. Mirowitz SA, Totty WG, Lee JKT. Characterization of musculoskeletal masses using dynamic Gd-DTPA enhanced spin-echo MRI. J Comput Assist Tomogr 1992;16:120–125.

    PubMed  CAS  Google Scholar 

  48. Fletcher BD, Hanna SL, Fairclough D, Gronemeyer SA. Pediatric musculoskeletal tumors: use of dynamic, contrast-enhanced MR imaging to monitor response to chemotherapy. Radiology 1992;184:243–248.

    PubMed  CAS  Google Scholar 

  49. Hanna SL, Parham DM, Fairclough DL, Meyer WH, Le AH, Fletcher BD. Assessment of osteosarcoma response to preoperative chemotherapy using dynamic FLASH gadolinium-DTPA-enhanced magnetic resonance mapping. Invest Radiol 1992;27:367–373.

    Article  PubMed  CAS  Google Scholar 

  50. Bullock PR, Mansfield P, Gowland P, Worthington BS, Firth JL. Dynamic imaging of contrast enhancement in brain tumors. Magn Reson Med 1991;19:293–298.

    Article  PubMed  CAS  Google Scholar 

  51. Larsson HBW, Stubgaard M, Frederiksen JL, Jensen M, Henriksen O, Paulson OB. Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors. Magn Reson Med 1990;16:117–131.

    Article  PubMed  CAS  Google Scholar 

  52. Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis. Magn Reson Med 1996;36:715–725.

    Article  PubMed  CAS  Google Scholar 

  53. Ostergaard L, Sorensen AG, Kwong KK, Weisskoff RM, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: Experimental comparison and preliminary results. Magn Reson Med 1996;36:726–736.

    Article  PubMed  CAS  Google Scholar 

  54. Sorenson AG, Rosen BR. Functional MRI of the brain. In: Atlas SW, ed. Magnetic Resonance Imaging of the Brain and Spine. Philadelphia: Lippincott-Raven, 1996:1501–1545.

    Google Scholar 

  55. Rosen BR, Belliveau JW, Vevea JM, Brady TJ. Perfusion imaging with NMR contrast agents. Magn Reson Med 1990;14:249–265.

    Article  PubMed  CAS  Google Scholar 

  56. Aronen HJ, Cohen MS, Belliveau JW, Fordham JA, Rosen BR. Ultrafast imaging of brain tumors. Top Magn Reson Imaging 1993;5:14–24.

    Article  PubMed  CAS  Google Scholar 

  57. Aronen HJ, Gazit IE, Louis DN, et al. Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 1994;191:41–51.

    PubMed  CAS  Google Scholar 

  58. Aronen HJ, Glass J, Pardo FS, et al. Echoplanar MR cerebral blood volume mapping of gliomas. Clinical utility. Acta Radiol 1995;36: 520–528.

    PubMed  CAS  Google Scholar 

  59. Rosen BR, Belliveau JW, Aronen HJ, et al. Susceptibility contrast imaging of cerebral blood volume: human experience. Magn Reson Med 1991;22:293–299.

    Article  PubMed  CAS  Google Scholar 

  60. Sorenson AG, Tievsky AL, Ostergaard L, Weisskoff RM, Rosen BR. Contrast agents in functional MR imaging. J Magn Reson Imaging 1997;7:47–55.

    Article  Google Scholar 

  61. Le Bihan D, Turner R, Moonen CTW, Pekar J. Imaging of diffusion and microcirculation with gradient sensitization: design, strategy, and significance. J Magn Reson Imaging 1991;1:7–28.

    Article  PubMed  Google Scholar 

  62. Le Bihan D, Turner R, Douek P, Patronas N. Diffusion MR imaging: clinical applications. AJR 1992;159:591–599.

    Article  PubMed  Google Scholar 

  63. Le Bihan D, Turner R. Diffusion and perfusion nuclear magnetic resonance imaging. In: Potchen EJ, Haacke EM, Siebert JE, Gottschalk A, eds. Magnetic Resonance Angiography. Concepts & Applications. St. Louis: Mosby Year-Book, 1993:323–342.

    Google Scholar 

  64. Moseley ME, Cohen Y, Kucharczyk J, et al. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 1990;176:439–445.

    PubMed  CAS  Google Scholar 

  65. Beauchamp NJJ, Ulug AM, Passe TJ, van Zijl PCM. MR diffusion imaging in stroke: review and controversies. Radio-Graphics 1998;18: 1269–1283.

    Google Scholar 

  66. van Gelderen P, de Vleeschouwer MHM, DesPres D, Pekar J, van Zijl PCM, Moonen CTW. Water diffusion and acute stroke. Magn Reson Med 1994;31:154–163.

    Article  PubMed  Google Scholar 

  67. Pajevic S, Pierpaoli C. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med 1999;42:526–540.

    Article  PubMed  CAS  Google Scholar 

  68. Virta A, Barnett A, Pierpaoli C. Visualizing and characterizing white matter fiber structure and architecture in the human pyramidal tract using diffusion tensor MRI. Magn Reson Imaging 1999;17:1121–1133.

    Article  PubMed  CAS  Google Scholar 

  69. Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology 1996;201:637–648.

    PubMed  CAS  Google Scholar 

  70. Basser PJ, Mattiello J, LeBihan D. MR imaging of fiber-tract direction and diffusion in anisotropic tissues. In: Twelfth Annual Meeting of the Society of Magnetic Resonance in Medicine, New York, 1993, Vol. 1. Society of Magnetic Resonance in Medicine, New York.

    Google Scholar 

  71. Chenevert TL, McKeever PE, Ross BD. Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin Cancer Res 1997;3: 1457–1466.

    PubMed  CAS  Google Scholar 

  72. Becker ED. High Resolution NMR. Theory and Chemical Applications. New York: Academic Press, 1980.

    Google Scholar 

  73. Aue WP. Localization methods for in vivo NMR spectroscopy. Rev Magn Reson Med 1986;1:21–72.

    Google Scholar 

  74. Brown TR, Kincaid BM, Ugurbil K. NMR chemical shift imaging in three dimensions. Proc Natl Acad Sci USA 1982;79:3523–3526.

    Article  PubMed  CAS  Google Scholar 

  75. Maudsley AA, Hilal SK, Perman WH, Simon HE. Spatially resolved high resolution spectroscopy by “four-dimensional” NMR. J Magn Reson 1983;51:147–152.

    CAS  Google Scholar 

  76. Granot J. Selected volume excitation using stimulated echoes (VEST): application to spatially localized spectroscopy and imaging. J Magn Reson 1986;70:488–492.

    CAS  Google Scholar 

  77. Frahm J, Merboldt K-D, Hänicke W. Localized proton spectroscopy using stimulated echoes. J Magn Reson 1987;72:502–508.

    CAS  Google Scholar 

  78. Kimmich R, Hoepfel D. Volume-selective multipulse spin-echo spectroscopy. J Magn Reson 1987;72:379–384.

    Google Scholar 

  79. Bottomley PA. Selective volume method for performing localized NMR spectroscopy. U.S. Patent 4.480.228,1984.

    Google Scholar 

  80. Ordidge RJ, Connelly A, Lohman JAB. Imageselected in vivo spectroscopy (ISIS). A new technique for spatially selective NMR spectroscopy. J Magn Reson 1986;66:283–294.

    CAS  Google Scholar 

  81. Fauth J-M, Schweiger A, Braunschweiler L, Forrer J, Ernst RR. Elimination of unwanted echoes and reduction of dead time in threepulse electron spin-echo spectroscopy. J Magn Reson 1986;66:74–85.

    CAS  Google Scholar 

  82. Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hänicke W, Sauter R. Localized proton NMR spectroscopy in different regions of the human brain in vivo. Relaxation times and concentrations of cerebral metabolites. Magn Reson Med 1989;11:47–63.

    Article  PubMed  CAS  Google Scholar 

  83. Pauly J, Le Roux P, Nishimura D, Macovski A. Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm. IEEE Trans Med Imaging 1991;10:53–65.

    Article  PubMed  CAS  Google Scholar 

  84. Jackson EF, Narayana PA, Flamig DP. Onedimensional spectroscopic imaging with stimulated echoes. Phantom and human leg studies. Magn Reson Imaging 1990;8:153–159.

    Article  PubMed  CAS  Google Scholar 

  85. Moonen CTW, Sobering G, van Zijl PCM, Gillen J, von Kienlin M, Bizzi A. Proton spectroscopic imaging of human brain. J Magn Reson 1992;98:556–575.

    Google Scholar 

  86. Jackson EF, Doyle TJ, Wolinsky JS, Narayana PA. Short TE hydrogen-1 spectroscopic MR imaging of normal human brain: reproducibility studies. J Magn Reson Imaging 1994;4:5445–5551.

    Google Scholar 

  87. Posse S, Tedeschi G, Risinger R, Ogg R, Le Bihan D. High speed 1H spectroscopic imaging in human brain by echo planar spatial-spectral encoding. Magn Reson Med 1995;33:34–40.

    Article  PubMed  CAS  Google Scholar 

  88. de Crespigny AJS, Carpenter TA, Hall LD. Region-of-interest selection by outer-volume saturation. J Magn Reson 1989;85:595–603.

    Google Scholar 

  89. Dunn JH, Matson GB, Maudsley AA, Weiner MW. 3D phase encoding 1H spectroscopic imaging of human brain. Magn Reson Imaging 1992;10:315–319.

    Article  Google Scholar 

  90. Posse S, Schuknecht B, Smith ME, van Zijl PCM, Herschkowitz N, Moonen CTW. Short echo time proton MR spectroscopic imaging. J Comput Assist Tomogr 1993;17:1–14.

    Article  PubMed  CAS  Google Scholar 

  91. Shungu DC, Glickson JD. Sensitivity and localization enhancement in multinuclear in vivo NMR spectroscopy by outer volume presaturation. Magn Reson Med 1993;30:661–671.

    Article  PubMed  CAS  Google Scholar 

  92. Hore PJ. Solvent suppression. In: Oppenheimer NJ, James TL, eds. Nuclear Magnetic Resonance, Part A: Spectral Techniques and Dynamics, Vol. 176. New York: Academic Press, 1989: 64–77.

    Chapter  Google Scholar 

  93. Doddrell DM, Galloway GJ, Brooks WM, et al. Water signal elimination in vivo using “suppression by mistimed echo and repetive gradient episodes.” J Magn Reson 1986;70: 176–180.

    CAS  Google Scholar 

  94. Soher BJ, van Zijl PCM, Duyn JH, Barker PB. Quantitative proton MR spectroscopic imaging of the human brain. Magn Reson Med 1996;35: 356–363.

    Article  PubMed  CAS  Google Scholar 

  95. Husted CA, Duijn JH, Matson GB, Maudsley AA, Weiner MW. Molar quantitation of in vivo proton metabolites in human brain with 3D magnetic resonance spectroscopy imaging. Magn Reson Imaging 1994;12:661–667.

    Article  PubMed  CAS  Google Scholar 

  96. Michaelis T, Merboldt K-D, Bruhn H, Hänicke W, Frahm J. Absolute concentration of metabolites in the adult human brain in vivo: quantification of localized proton MR spectra. Radiology 1993;187:219–227.

    PubMed  CAS  Google Scholar 

  97. Kreis R, Ernst T, Ross BD. Development of the human brain: in vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy. Magn Reson Med 1993;30:424–437.

    Article  PubMed  CAS  Google Scholar 

  98. Narayana PA, Fotedar LK, Jackson EF, Bohan TP, Butler IJ, Wolinsky JS. Regional in vivo proton magnetic resonance spectroscopy of brain. J Magn Reson 1989;83:44–52.

    CAS  Google Scholar 

  99. Davie CA, Barker GJ, Webb S, et al. Persistent functional deficit in multiple sclerosis and autosomal dominant cerebellar ataxia is associated with axon loss. Brain 1995;118:1583–1592.

    Article  PubMed  Google Scholar 

  100. Usenius J-PR, Kauppinen RA, Vainio PA, et al. Quantitative metabolite patterns of human brain tumors: detection by 1H NMR spectroscopy in vivo and in vitro. J Comput Assist Tomogr 1994;18:705–713.

    Article  PubMed  CAS  Google Scholar 

  101. Christiansen P, Henriksen O, Stubgaard M, Gideon P, Larsson HBW. In vivo quantification of brain metabolites by 1H-MRS using water as an internal standard. Magn Reson Imaging 1993;11:107–118.

    Article  PubMed  CAS  Google Scholar 

  102. Pan JW, Hetherington HP, Hamm JR, Shulman RG. Quantitation of metabolites by 1H NMR. Magn Reson Med 1991;20:48–56.

    Article  PubMed  CAS  Google Scholar 

  103. Danielsen ER, Michaelis T, Ross BD. Three methods of calibration in quantitative proton MR spectroscopy. J Magn Reson Ser B 1995; 106:287–291.

    Article  CAS  Google Scholar 

  104. Charles HC, Lazeyras F, Tupler LA, Krishnan RR. Reproducibility of high spatial resolution proton magnetic resonance spectroscopic imaging of the human brain. Magn Reson Med 1996;35:606–610.

    Article  PubMed  CAS  Google Scholar 

  105. Webb PG, Sailasuta N, Kohler SJ, Raidy T, Moats RA, Hurd RE. Automated single-voxel proton MRS: technical development and multisite verification. Magn Reson Med 1994;31:365–373.

    Article  PubMed  CAS  Google Scholar 

  106. Negendank WG, Sauter R, Brown TR, et al. Proton magnetic resonance spectroscopy in patients with glial tumors: a multicenter study. J Neurosurg 1996;84:449–458.

    Article  PubMed  CAS  Google Scholar 

  107. Doyle TJ, Bedell BJ, Narayana PA. Relative concentrations of proton MR visible neurochemicals in gray and white matter in human brain. Magn Reson Med 1995;33:755–759.

    Article  PubMed  CAS  Google Scholar 

  108. Hetherington HP, Pan JW, Mason GF, et al. Quantitative 1H spectroscopic imaging of human brain at 4.1 T using imaging segmentation. Magn Reson Med 1996;36:21–29.

    Article  PubMed  CAS  Google Scholar 

  109. Jackson EF, Meyers CA. Introduction to hippocampal spectroscopy. In: Tien RD, ed. Neuroimaging Clinics of North America, Vol. 7. Philadelphia: Saunders, 1997:143–154.

    Google Scholar 

  110. Ross B, Michaelis T. MR spectroscopy of the brain: neurospectroscopy. In: Edelman RR, Hesselink JR, Zlatkin MB, eds. Clinical Magnetic Resonance Imaging, Vol. 1. Philadelphia: Saunders, 1996:928–981.

    Google Scholar 

  111. Cox IJ. Development and applications of in vivo clinical magnetic resonance spectroscopy. Prog Biophys Mol Biol 1996;65:45–81.

    Article  PubMed  CAS  Google Scholar 

  112. Falini A, Calabrese G, Origgi D, et al. Proton magnetic resonance spectroscopy and intracranial tumors: clinical perspectives. J Neurol 1996;243:706–714.

    Article  PubMed  CAS  Google Scholar 

  113. Vion-Dury J, Meyerhoff DJ, Cozzone PJ, Weiner MW. What might be the impact on neurology of the analysis of brain metabolism by in vivo magnetic resonance spectroscopy? J Neurol 1994;241:354–371.

    Article  PubMed  CAS  Google Scholar 

  114. Leach MO. Magnetic resonance spectroscopy applied to clinical oncology. Tech Health Care 1994;2:235–246.

    CAS  Google Scholar 

  115. Barker PB, Glickson JD, Bryan RN. In vivo magnetic resonance spectroscopy of human brain tumors. Top Magn Reson Imaging 1993; 5:32–45.

    Article  PubMed  CAS  Google Scholar 

  116. Howe FA, Maxwell RJ, Saunders DE, Brown MM, Griffiths JR. Proton spectroscopy in vivo. Magn Reson Q 1993;9:31–59.

    PubMed  CAS  Google Scholar 

  117. Negendank W. Studies of human tumors by MRS: a review. NMR Biomed 1992;5:303–324.

    Article  PubMed  CAS  Google Scholar 

  118. Bottomley PA. Human in vivo NMR spectroscopy in diagnostic medicine: clinical tool or research probe? Radiology 1989;170:1–15.

    PubMed  CAS  Google Scholar 

  119. Birken DL, Oldendorf WH. N-Acetyl-L-aspartic acid: a literature review of a compound prominent in 1H-NMR spectroscopic studies of brain. Neurosci Biobehav Rev 1989;13:23–31.

    Article  PubMed  CAS  Google Scholar 

  120. Kreis R, Ernst T, Ross BD. Development of the human brain: in vivo quantification of metabolite and water content with 1H-MRS. In: Twelfth Annual Meeting of the Society of Magnetic Resonance in Medicine, New York, 1993, Vol. 1. Society of Magnetic Resonance in Medicine, New York.

    Google Scholar 

  121. van der Knaap MS, van der Grond J, van Rijen PC, Faber JA, Valk J, Willemse K. Agedependent changes in localized proton and phosphorus MR spectroscopy of the brain. Radiology 1990;176:509–515.

    PubMed  Google Scholar 

  122. Bizzi A, Movsas B, Tedeschi G, et al. Response of non-Hodgkin lymphoma to radiation therapy: early and long-term assessment with H-1 MR spectroscopic imaging. Radiology 1995;194:271–276.

    PubMed  CAS  Google Scholar 

  123. Sijens PE, Knopp MV, Brunett A, et al. 1H MR spectroscopy in patients with metastatic brain tumors: a multicenter study. Magn Reson Med 1995;33:818–826.

    Article  PubMed  CAS  Google Scholar 

  124. McBride DQ, Miller BL, Nikas DL, et al. Analysis of brain tumors using 1H magnetic resonance spectroscopy. Surg Neurol 1995;44: 137–144.

    Article  PubMed  CAS  Google Scholar 

  125. Kugel H, Heindel W, Bunke J, Du Mesnil R, Friedmann G. Human brain tumors: spectral patterns detected with localized H-1 MR spectroscopy. Radiology 1994;183:701–709.

    Google Scholar 

  126. Yamagata NT, Miller BL, McBride D, et al. In vivo proton spectroscopy of intracranial infections and neoplasms. J Neuroimaging 1994;4: 23–28.

    PubMed  CAS  Google Scholar 

  127. Ott D, Hennig J, Ernst T. Human brain tumors: Assessment with in vivo proton MR spectroscopy. Radiology 1993;186:745–752.

    PubMed  CAS  Google Scholar 

  128. Sutton LN, Wang Z, Gusnard D, et al. Proton magnetic resonance spectroscopy of pediatric brain tumors. Neurosurgery (Baltim) 1992;31: 195–202.

    Article  CAS  Google Scholar 

  129. Fulham MJ, Bizzi A, Dietz MJ, et al. Mapping of brain tumor metabolites with proton MR spectroscopic imaging: clinical relevance. Radiology 1992;185:675–686.

    PubMed  CAS  Google Scholar 

  130. Demaeral P, Johannik K, van Hecke P, et al. Localized 1H NMR spectroscopy in fifty cases of newly diagnosed intracranial tumors. J Comput Assist Tomogr 1991;15:67–76.

    Article  Google Scholar 

  131. Frahm J, Bruhn H, Hänicke W, Merboldt K-D, Mursch K, Markakis E. Localized proton NMR spectroscopy of brain tumors using short-echo time STEAM sequences. J Comput Assist Tomogr 1991;15:915–922.

    Article  PubMed  CAS  Google Scholar 

  132. Henriksen O, Wieslander S, Gjerris F, Jensen KM. In vivo 1H spectroscopy of human intracranial tumors at 1.5 T. Acta Radiol 1991;32:95–99.

    Article  PubMed  CAS  Google Scholar 

  133. Alger JR, Frank JA, Bizzi A, et al. Metabolism of human gliomas: assessment with H-1 MR spectroscopy and F-18 fluorodeoxyglucose PET. Radiology 1990;177:633–641.

    PubMed  CAS  Google Scholar 

  134. Gill SS, Thomas DG, van Bruggen N, et al. Proton MR spectroscopy of intracranial tumors: in vivo and in vitro studies. J Comput Assist Tomogr 1990;14:497–504.

    Article  PubMed  CAS  Google Scholar 

  135. Luyten PR, Marien AJH, Heindel W, et al. Metabolic imaging of patients with intracranial tumors: H-1 MR spectroscopic imaging and PET. Radiology 1990;176:791–799.

    PubMed  CAS  Google Scholar 

  136. Segebarth CM, Baleriaux DF, Luyten PR, den-Hollander JA. Detection of metabolic heterogeneity of human intracranial tumors in vivo by 1H NMR spectroscopic imaging. Magn Reson Med 1990;13:62–76.

    Article  PubMed  CAS  Google Scholar 

  137. Arnold DL, Shoubridge EA, Emrich J, Feindel W, Villemure JG. Early metabolic changes following chemotherapy of human gliomas in vivo demonstrated by phosphorus magnetic resonance spectroscopy. Invest Radiol 1989;24: 958–961.

    Article  PubMed  CAS  Google Scholar 

  138. Bruhn H, Frahm J, Gyngell ML, et al. Noninvasive differentiation of tumors with use of localized H-1 MR spectroscopy in vivo: initial experience in patients with cerebral tumors. Radiology 1989;172:541–548.

    PubMed  CAS  Google Scholar 

  139. Tedeschi G, Bertolino A, Campbell G, et al. Brain regional distribution pattern of metabolite signal intensities in young adults by proton magnetic resonance spectroscopic imaging. Neurology 1995;45:1384–1391.

    Article  PubMed  CAS  Google Scholar 

  140. Tedeschi G, Righini A, Bizzi A, Barnett AS, Alger J. Cerebral white matter in the centrum semiovale exhibits a larger N-acetyl signal than does gray matter in long echo time 1H-magnetic resonance spectroscopic imaging. Magn Reson Med 1995;33:127–133.

    Article  PubMed  CAS  Google Scholar 

  141. Hetherington HP, Mason GF, Pan JW, et al. Evaluation of cerebral gray and white matter metabolite differences by spectroscopic imaging at 4.1 T. Magn Reson Med 1994;32:565–571.

    Article  PubMed  CAS  Google Scholar 

  142. Narayana PA, Johnston D, Flamig DP. In vivo proton magnetic resonance spectroscopy studies of human brain. Magn Reson Imaging 1991;9:303–308.

    Article  PubMed  CAS  Google Scholar 

  143. Tedeschi G, Lundbom N, Raman R, et al. Increased choline signal coinciding with malignant degeneration of cerebral gliomas: a serial proton magnetic resonance spectroscopy imaging study. J Neurosurg 1997;87:516–524.

    Article  PubMed  CAS  Google Scholar 

  144. Tien RD, Lai PH, Smith JS, Lazeyras F. Single-voxel proton brain spectroscopy exam (PROBE/SV) in patients with primary brain tumors. AJR 1996;167:201–209.

    Article  PubMed  CAS  Google Scholar 

  145. Miller BL, Chang L, Booth R, et al. In vivo 1H MRS choline: correlation with in vitro chemistry/histology. Life Sci 1996;58:1929–1935.

    Article  PubMed  CAS  Google Scholar 

  146. Tzika AA, Ball WS, Vigneron DB, Dunn RS, Kirks DR. Clinical proton MR spectroscopy of neurodegenerative disease in childhood. AJNR 1993;14:1267–1281.

    PubMed  CAS  Google Scholar 

  147. Gideon P, Henriksen O. In vivo relaxation of Nacetyl-aspartate, creatine plus phosphocreatine, and choline containing compounds during the course of brain infarction: a proton MRS study. Magn Reson Imaging 1992;10:983–988.

    Article  PubMed  CAS  Google Scholar 

  148. Henriksen O, Gideon P, Sperling B, Olsen TS, Jørgensen HS, Arlien-Søborg P. Cerebral lactate production and blood flow in acute stroke. J Magn Reson Imaging 1992;2:511–517.

    Article  PubMed  CAS  Google Scholar 

  149. Mathews VP, Barker PB, Bryan RN. Magnetic resonance evaluation of stroke. Magn Reson Q 1992;8:245–263.

    PubMed  CAS  Google Scholar 

  150. Sappey-Marinier D, Calabrese G, Hetherington H, et al. Proton magnetic resonance spectroscopy of human brain: applications to normal white matter, chronic infarction, and MRI white matter signal hyperintensities. Magn Reson Med 1992;26:313–327.

    Article  PubMed  CAS  Google Scholar 

  151. Fenstermacher MJ, Narayana PA. Serial proton magnetic resonance spectroscopy of ischemic brain injury in humans. Invest Radiol 1990; 25:1034–1039.

    Article  PubMed  CAS  Google Scholar 

  152. Bruhn H, Frahm J, Gyngell ML, Merboldt KD, Hänicke W, Sauter R. Cerebral metabolism in man after acute stroke: new observations using localized proton NMR spectroscopy. Magn Reson Med 1989;9:126–131.

    Article  PubMed  CAS  Google Scholar 

  153. Tzika AA, Vigneron DB, Ball WSJ, Dunn RS, Kirks DR. Localized proton MR spectroscopy of the brain in children. J Magn Reson Imaging 1993;3:719–729.

    Article  PubMed  CAS  Google Scholar 

  154. Poptani H, Gupta RK, Jain VK, Roy R, Pandey R. Cystic intracranial mass lesions: possible role of in vivo MR spectroscopy in its differential diagnosis. Magn Reson Imaging 1995;13:1019–1029.

    Article  PubMed  CAS  Google Scholar 

  155. Chang L, McBride D, Miller BL, et al. Localized in vivo 1H magnetic-resonance spectroscopy and in vitro analysis of heterogeneous brain tumors. J Neuroimaging 1995;5:157–163.

    PubMed  CAS  Google Scholar 

  156. Arnold DL, Shoubridge EA, Villemure JG, Feindel W. Proton and phosphorus magnetic resonance spectroscopy of human astrocytomas in vivo. Preliminary observations on tumor grading. NMR Biomed 1990;3:184–189.

    Article  PubMed  CAS  Google Scholar 

  157. Pan JW, Mason GF, Pohost GM, Hetherington HP. Spectroscopic imaging of human brain glutamate by water-suppressed J-refocused coherence transfer at 4.1 T. Magn Reson Med 1996;36:7–12.

    Article  PubMed  CAS  Google Scholar 

  158. Keltner JR, Wald LL, Frederick BB, Renshaw PF. In vivo detection of GABA in human brain using a localized double-quantum filter technique. Magn Reson Med 1997;37:366–371.

    Article  PubMed  CAS  Google Scholar 

  159. Keltner JR, Wald LL, Christensen JD, et al. A technique for detecting GABA in the human brain with PRESS localization and optimized refocusing spectral editing radiofrequency pulses. Magn Reson Med 1996;36:458–461.

    Article  PubMed  CAS  Google Scholar 

  160. Rothman DL, Petroff OA, Behar KL, Mattson RH. Localized 1H NMR measurements of gamma-aminobutyric acid in human brain in vivo. Proc Natl Acad Sci USA 1993;90:5662–5666.

    Article  PubMed  CAS  Google Scholar 

  161. Schick F, Einsele H, Kost R, et al. Hematopoietic reconstitution after bone marrow transplantation: assessment with MR imaging and H-1 localized spectroscopy. J Magn Reson Imaging 1994;4:71–78.

    Article  PubMed  CAS  Google Scholar 

  162. Schick F, Bongers H, Jung W- I, Skalej M, Lutz O, Claussen CD. Volume-selective proton MRS in vertebral bodies. Magn Reson Med 1992;26: 207–217.

    Article  PubMed  CAS  Google Scholar 

  163. Jensen KE, Jensen M, Grundtvig P, Thomsen C, Karle H, Henriksen O. Localized in vivo proton spectroscopy of the bone marrow in patients with leukemia. Magn Reson Imaging 1990;8: 779–789.

    Article  PubMed  CAS  Google Scholar 

  164. Schick F, Duda SH, Lutz O, Claussen CD. Lipids in bone tumors assessed by magnetic resonance: chemical shift imaging and proton spectroscopy in vivo. Anticancer Res 1996;16: 1569–1574.

    PubMed  CAS  Google Scholar 

  165. Bongers H, Schick F, Skalej M, Jung W- I, Stevens A. Localized in vivo 1H spectroscopy of human skeletal muscle: normal and pathologic findings. Magn Reson Imaging 1992;10:957–964.

    Article  PubMed  CAS  Google Scholar 

  166. Garcia-Segura JM, Sanvhez-Chapado M, Ibarburen C, et al. In vivo proton magnetic resonance spectroscopy of diseased prostate: spectroscopic features of malignant versus benign pathology. Magn Reson Imaging 1999;17:755–765.

    Article  PubMed  CAS  Google Scholar 

  167. Liney GP, Turnbull LW, Knowles AJ. In vivo magnetic resonance spectroscopy and dynamic contrast enhanced imaging of the prostate gland. NMR Biomed 1999;12:39–44.

    Article  PubMed  CAS  Google Scholar 

  168. Hahn P, Smith IC, Leboldus L, Somorjai RL, Bezabeh T. The classification of benign and malignant human prostate tissue by multivariate analysis of 1H magnetic resonance spectra. Cancer Res 1997;57:3398–3401.

    PubMed  CAS  Google Scholar 

  169. Heerschap A, Jager GJ, van der Graaf M, et al. In vivo proton MR spectroscopy reveals altered metabolite content in malignant prostate tissue. Anticancer Res 1997;17:1455–1460.

    PubMed  CAS  Google Scholar 

  170. Kurhanewicz J, Vigneron DB, Nelson SJ, et al. In vivo citrate levels in the normal and pathologic human prostate. In: Twelfth Annual Meeting of the Society of Magnetic Resonance in Medicine, New York, 1993, Vol. 1. Society of Magnetic Resonance in Medicine, New York.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jackson, E.F. (2001). Principles of Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy. In: Kim, E.E., Yang, D.J. (eds) Targeted Molecular Imaging in Oncology. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3505-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3505-5_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-3507-9

  • Online ISBN: 978-1-4757-3505-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics