Principles of Single Photon Emission Computed Tomography and Positron Emission Tomography

  • Wai-Hoi Gary Wong
  • Jorge Uribe


Radionuclide-tracer targeted imaging is based on the detection of gamma rays emitted by the radionuclides embedded in biologically specific compounds after the injection of the compounds into human or experimental animals. The most common imaging radionuclides used for imaging emit gamma rays, which are uncorrelated, and these gamma rays are detected individually or singularly for imaging; this is called single photon imaging. The basic imaging devices used for single photon imaging are gamma cameras or the rotational version, single photon emission computed tomography (SPECT) cameras. Another radionuclide-tracer imaging technique uses positron emitting radionuclides that emit two 511-KeV gamma rays simultaneously, and this pair of gamma rays is detected simultaneously or coincidentally for imaging purposes; this is known as coincidence imaging or positron imaging.


Positron Emission Tomography Single Photon Emission Compute Tomography Standard Uptake Value Gamma Camera Positron Emission Tomography Camera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anger HO. Radioisotope cameras. In: Hine GJ, ed. Instrumentation in Nuclear Medicine, Vol. 1. New York: Academic Press, 1967:485–552.Google Scholar
  2. 2.
    Budinger TF. Physical attributes of singlephoton tomography. J Nucl Med 1980;21:579–592.PubMedGoogle Scholar
  3. 3.
    Croft BY. Single Photon Emission Computed Tomography. Chicago: Year Book, 1986.Google Scholar
  4. 4.
    Fowler JS, Wolf AP. Positron emitter-labeled compounds: priorities and problems. In: Phelps M, Mazziotta J, Schelbert H, eds. Positron Emission Tomography and Autoradiography: Principles and Applications for the Brain and Heart. New York: Raven Press, 1986:391–450.Google Scholar
  5. 5.
    Phelps ME, Mazziotta JC, Schelbert HR, eds. Positron Emission Tomography and Autoradiography: Principles and Applications for the Brain and Heart. New York: Raven Press, 1986.Google Scholar
  6. 6.
    Bracewell RN, Riddle AC. Inversion of fan-beam scans in radioastronomy. Astrophys J 1967;150: 427–434.CrossRefGoogle Scholar
  7. 7.
    Brooks RA, DiChiro G. Theory of image reconstruction in computed tomography. Radiology 1975;117:561–572.PubMedGoogle Scholar
  8. 8.
    Muehllehner M, Geagan P, Countryman P, et al. SPECT scanner with PET coincidence capability. J Nucl Med 1995;36(5):70.Google Scholar
  9. 9.
    Muehllehner G, Karp JS. A positron camera using position sensitive detectors: PENN-PET. J Nucl Med 1986;27:90–98.PubMedGoogle Scholar
  10. 10.
    Adam LE, Zaers J, Ostertag H, et al. Performance evaluation of the whole-body PET scanner ECAT EXACT HR+ following the IEC standard. IEEE Trans Nucl Sci 1997;44(3):1172–1179.CrossRefGoogle Scholar
  11. 11.
    Wong W-H, Uribe J, Lu W, et al. Design of a Variable Field of View PET Camera. IEEE Transactions on Nuclear Science 1996;43(3): 1915–1920.CrossRefGoogle Scholar
  12. 12.
    Uribe J, Baghaei H, Li H, et al. Basic imaging performance characteristics of a variable field of view PET camera using quadrant sharing detector design. IEEE Trans Nucl Sci 1999;46(3): 491–449.CrossRefGoogle Scholar
  13. 13.
    Frackowiak RSJ, Lenzi G-L, Jones T, et al. Quantitative measurement of emission tomography: theory, procedure and normal values. J Comput Assist Tomogr 1980;4:727–736.PubMedCrossRefGoogle Scholar
  14. 14.
    Huang S-C, Carson RE, Hoffman EJ, et al. Quantitative measurement of local cerebral blood flow in humans by positron computed tomography and 15O-water. J Cereb Blood Flow Metab 1983;3:141–153.PubMedCrossRefGoogle Scholar
  15. 15.
    Ruotsalainen U, Raitakari M, Nuutila P, et al. Quantitative blood flow measurement of skeletal muscle using oxygen-15-water and PET. J Nucl Med 1997;38(2):314–319.PubMedGoogle Scholar
  16. 16.
    Phelps ME, Huang SC, Hoffman EJ, et al. Tomographic measurements of local cerebral glucose metabolic rate in humans with [18F]2-fluro-2-deoxy-D-glucose: validation of method. Ann Neurol 1979;6:371–388.PubMedCrossRefGoogle Scholar
  17. 17.
    Patlak C, Blasberg R, Fenstermacher J. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 1983;3:1–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Gjedde A. Calculation of cerebral glucose phosphorylation from brain uptake of glucose analogs in vivo: a re-examination. Brain Res Rev 1982;4:237–274.CrossRefGoogle Scholar
  19. 19.
    Sokoloff L, Reivich M, Kennedy C, et al. The (14C)-deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem 1977; 28:897–916.PubMedCrossRefGoogle Scholar
  20. 20.
    Carson RE. Parameter estimation in positron emission tomography. In: Phelps M, Mazziotta J, Schelbert H, eds. Positron Emission Tomography and Autoradiography: Principles and Applications for the Brain and Heart. New York: Raven Press, 1986:347–390.Google Scholar
  21. 21.
    Hanburg LM, Hunter GT, Alpert NM, et al. The dose uptake ratio as an index of glucose metabolism: useful parameter or over simplification? J Nucl Med 1994;35:1308–1312.Google Scholar
  22. 22.
    Zasadny KR, Wahl RL. Standardized uptake values of normal tissues at PET with 2-[fluorine-18-]-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction. Radiology 1993;189:847–850.PubMedGoogle Scholar
  23. 23.
    Lindholm P, Minn H, Leskinen-Kallio S, et al. Influence of the blood glucose concentration on FDG uptake in cancer—a PET study. J Nucl Med 1993;34:1–6.PubMedGoogle Scholar
  24. 24.
    Langen K-J, Braun U, Kops ER, et al. The influence of plasma glucose levels on fluorine-18-fluorodeoxyglucose uptake in bronchial carcinomas. J Nucl Med 1993;34:355–359.PubMedGoogle Scholar
  25. 25.
    Kim CK, Gupta NC, Chandramouli B, Alavi A. Standardized uptake values of FDG: body surface area correction is preferable to body weight correction. J Nucl Med 1994;35:164–167.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Wai-Hoi Gary Wong
  • Jorge Uribe

There are no affiliations available

Personalised recommendations