Imaging of Angiogenesis

  • Kenneth C. Wright
  • E. Edmund Kim


Angiogenesis is the process by which new vessels grow toward and into a tissue. It is required for several physiological processes including embryogenesis, corpus luteum formation, and wound healing. It is also a critical element in the pathogenesis of many disorders, most notably the rapid growth and metastasis of solid tumors.


Tumor Angiogenesis Arterial Spin Label Compute Tomography Perfusion Power Doppler Tumor Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Folkman J. Intratumoral microvascular density as a prognostic factor in cancer. Am J Pathol 1995;147:9–19.Google Scholar
  2. 2.
    Folkman J. The role of angiogenesis in tumor growth. Semin Cancer Biol 1992;3:65–71.PubMedGoogle Scholar
  3. 3.
    Folkman J. Clinical applications of research on angiogenesis. N Engl J Med 1995;333:1757–1763.PubMedCrossRefGoogle Scholar
  4. 4.
    Folkman J. Introduction: angiogenesis and cancer. Semin Cancer Biol 1992;3:47–48.Google Scholar
  5. 5.
    Polverini PJ, Leibovich JS. Induction of neovascularization in vivo and endothelial proliferation in vitro by tumor-associated macrophages. Lab Invest 1984;51:635–642.PubMedGoogle Scholar
  6. 6.
    Azizkhan RG, Azizkhan JC, Zitter BR, et al. Mast cell heparin stimulates migration of capillary endothelial cells in vitro. J Exp Med 1980;152:931–944.PubMedCrossRefGoogle Scholar
  7. 7.
    Ziche M, Morbidelli L, Donnini S. Angiogenesis. Exp Nephrol 1996;4:1–14.PubMedGoogle Scholar
  8. 8.
    Dameron K, Volpert O, Tainsky M, Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin 1. Science 1994;265: 1582–1584.PubMedCrossRefGoogle Scholar
  9. 9.
    Weidner N. Tumor angiogenesis: review of current applications in tumor prognostication. Semin Diagn Pathol 1993;10:302–313.PubMedGoogle Scholar
  10. 10.
    Weinstat-Saslaw D, Steeg P. Angiogenesis and colonization in the tumor metastatic process: basic and applied advances. Fed Am Soc Exp Biol J 1994;8:401–407.Google Scholar
  11. 11.
    Jain R, Gerlowski L. Extravascular transport in normal and tumor tissues. Crit Rev Oncol Hematol 1984;5:115–170.CrossRefGoogle Scholar
  12. 12.
    Brem S, Cotran R, Folkman J. Tumor angiogenesis: a quantitative method of histologic grading. J Natl Cancer Inst 1972;48:347–356.PubMedGoogle Scholar
  13. 13.
    Srivastava A, Laidler P, Davies R, et al. The prognostic significance of tumor vascularity in intermediate thickness (0.76–4.0 mm thick) skin melanoma: a quantitative histologic study. Am J Pathol 1988;133:419–423.PubMedGoogle Scholar
  14. 14.
    Weidner N. Intratumor microvessel density as a prognostic factor in cancer (comment). Am J Pathol 1995; 147:9–19.PubMedGoogle Scholar
  15. 15.
    Weidner N, Semple JP, Welch WR, et al. Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. N Engl J Med 1991; 324:1–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Gasparini G, Harris A. Clinical importance of the determination of tumor angiogenesis in breast carcinoma: much more than a new prognostic tool: review. J Clin Oncol 1995;13:765–782.PubMedGoogle Scholar
  17. 17.
    Kirkham BC, Tyson IB, Wirtanen GW. Comparison of 131I-macroaggregated liver scanning in selective hepatic arteriography. J Nucl Med 1970;11:196–202.PubMedGoogle Scholar
  18. 18.
    Kaneko M, Sasaki T, Kido C. Positive scintigraphy of tumor by means of intra-arterial injection of radioiodinated macroaggregated albumin. AJR (Am J Roentgenol) 1968;102:81–87.CrossRefGoogle Scholar
  19. 19.
    Blank RJ, Tyson IB. Intra-arterial 131I-macroaggregated albumin to define intrahepatic tumors: a possible method of quantitating tumor response to therapy. J Nucl Med 1969;10: 514–516.PubMedGoogle Scholar
  20. 20.
    Gyves JW, Ziessman HA, Ensminger WD, et al. Definition of hepatic tumor microcirculation by single photon emission computed tomography (SPECT). J Nucl Med 1984;25:972–977.PubMedGoogle Scholar
  21. 21.
    Perlman SB, Stone CK. Clinical positron emission tomography. In: Wilson MA, ed. Textbook of Nuclear Medicine. Philadelphia: LippincottRaven,1998:331–351.Google Scholar
  22. 22.
    Piwnica-Worms D, Chiu ML, Budding M, et al. Functional imaging of multidrug-resistant P-glycoprotein with an organotechnetium complex. Cancer Res 1993;53:977–984.PubMedGoogle Scholar
  23. 23.
    Scopinaro F, Schillaci O, Scarpina M, et al. Technetium-99m sestamibi: an indicator of breast cancer invasiveness. Eur J Nucl Med 1994;21:984–987.PubMedCrossRefGoogle Scholar
  24. 24.
    Yoon JH, Bom HS, Song HC, et al. Double-phase Tc-99m sestamibi scintimammography to assess angiogenesis and p-glycoprotein expression in patients with untreated breast cancer. Clin Nucl Med 1999;5:314–318.CrossRefGoogle Scholar
  25. 25.
    Omar WS, Eissa S, Moustafa H, et al. Role of thallium-201 chloride and Tc-99m methoxyisobutyl-isonitrile (sestaMIBI) in evaluation of breast masses: correlation with the immunohistochemical characteristic parmeters (Ki-67, PCNA, Bcl, and angiogenesis) in malignant lesions. Anticancer Res 1997;17:1639–1644.PubMedGoogle Scholar
  26. 26.
    Bom HS, Kim YC, Min JJ, et al. Tc-99m sestamibi uptake in small cell lung cancer. J Nucl Med 1998;39:91–94.PubMedGoogle Scholar
  27. 27.
    Mankoff DA, Dunnwald LK, Gralow JR, et al. Monitoring and predicting the response of breast cancer to neo-adjuvant chemotherapy using [Tc-99m] MIBI scintimammography. J Nucl Med 1997;38:46 (abstract).Google Scholar
  28. 28.
    Ciarmiello A, Del Vecchio S, Carriero MV, et al. Efflux rate of Tc-99m MIBI as a predictor of the outcome of therapy in patients with advanced breast carcinoma. J Nucl Med 1997;38:241 (abstract).Google Scholar
  29. 29.
    Zareneyrizi F, Yang DJ, Oh C-S, et al. Synthesis of Tc-99m ethylenedicysteine-colchicine for evaluation of antiangiogenic effect. Anti cancer Drugs (1999);10:685–692.PubMedCrossRefGoogle Scholar
  30. 30.
    Yang DJ, Wallace S, Cherif A, et al. Development of F-18-labeled fluoroerythronitromidazole as a PET agent for imaging tumor hypoxia. Radiology 1995;194:795–800.PubMedGoogle Scholar
  31. 31.
    Cherif A, Wallace S, Yang DJ, et al. Development of new markers for hypoxic cells: [131I]iodomisonidazole and [131I]iodoerythronitromidazole. J Drug Targeting 1996;4:31–39.CrossRefGoogle Scholar
  32. 32.
    Yang DJ, Ilgan S, Higuchi T, et al. Noninvasive assessment of tumor hypoxia with 99mTc labeled metronidazole. Pharm Res 1999;16:743–750.PubMedCrossRefGoogle Scholar
  33. 33.
    Rubin JM, Bude RO, Carson PL, et al. Power Doppler US: a potentially useful alternative to mean-frequency-based color Doppler US. Radiology 1994;190:853–856.PubMedGoogle Scholar
  34. 34.
    Bude RO, Rubin JM, Adler RS. Power versus conventional color Doppler sonography: comparison in the depiction of normal intrarenal vasculature. Radiology 1995;192:777–780.Google Scholar
  35. 35.
    Newman JS, Adler RS, Bude RO, et al. Detection of soft-tissue hyperemia: value of power Doppler sonography. AJR (Am J Roentgenol) 1994;163: 385–389.CrossRefGoogle Scholar
  36. 36.
    Dymling SO, Persson HW, Hertz CH. Measurement of blood perfusion in tissue using Doppler ultrasound. Ultrasound Med Biol 1991;17: 433–444.PubMedCrossRefGoogle Scholar
  37. 37.
    Shung KK. Scattering of ultrasound by blood. IEEE Trans Biomed Eng 1976;23:460–467.PubMedCrossRefGoogle Scholar
  38. 38.
    Shung KK. In vitro experimental results on ultrasonic scattering in biological tissues. In: Shung KK, Thieme GA, eds. Ultrasonic Scattering in Biological Tissues. Boca Raton: CRC Press, 1993:291–312.Google Scholar
  39. 39.
    Sahn DJ. Instrumentation and physical factors related to visualization of stenotic regurgitant jets by Doppler color flow mapping. Am Coll Cardiol 1988;12:1354–1365.CrossRefGoogle Scholar
  40. 40.
    Simpson IA, Valdes-Cruz LM, Sonn DJ, et al. Doppler color flow mapping of simulated in vitro regurgitant jets: evaluation of the effects of orifice size and hemodynamic variables. Am Coll Cardiol 1989; 13:1195–1207.CrossRefGoogle Scholar
  41. 41.
    Jain SP, Fan PH, Philpot EF, et al. Influence of various instrument settings on the flow information derived from the power mode. Ultrasound Med Biol 1991;17:49–54.PubMedCrossRefGoogle Scholar
  42. 42.
    Lee WJ, Chu JS, Hong SJ, et al. Breast cancer angiogenesis: a quantitative morphologic and Doppler imaging study. Ann Surg Oncol 1995;2: 246–251.PubMedCrossRefGoogle Scholar
  43. 43.
    Huang SC, Yu CH, Huang RT, et al. Intratumoral blood flow in uterine myoma correlated with a lower tumor size and volume, but not correlated with cell proliferation or angiogenesis. Obstet Gynecol 1996;87:1019–1024.PubMedCrossRefGoogle Scholar
  44. 44.
    Peters-Engl C, Medl M, Mirau M, et al. Colorcoded and spectral Doppler flow in breast carcinomas-relationship with the tumor microvasculature. Breast Cancer Res Treat 1998;47:83–99.PubMedCrossRefGoogle Scholar
  45. 45.
    Raza S, Baum JK. Solid breast lesions: evaluation with power Doppler US. Radiology 1997; 203:164–168.PubMedGoogle Scholar
  46. 46.
    Sahin Akyar G, Sumer H. Color Doppler ultrasound and spectral analysis of tumor vessels in the differential diagnosis of solid breast masses. Invest Radiol 1996;31:72–79.CrossRefGoogle Scholar
  47. 47.
    Delorme S, Weisser G, Zuna I, et al. Quantitative characterization of color Doppler images: reproducibility, accuracy and limitations. J Clin Ultrasound 1995;23:537–550.PubMedCrossRefGoogle Scholar
  48. 48.
    Fein M, Delorme S, Weisser G, et al. Quantification of color Doppler for the evaluation of tissue vascularization. Ultrasound Med Biol 1995;21: 1013–1019.PubMedCrossRefGoogle Scholar
  49. 49.
    Bell DS, Bamber JC, Eckersley RJ. Segmentation and analysis of colour Doppler images of tumour vasculature. Ultrasound Med Biol 1995; 21:635–647.PubMedCrossRefGoogle Scholar
  50. 50.
    Bude RO, Rubin JM. Power Doppler sonography. Radiology 1996;200:21–23.PubMedGoogle Scholar
  51. 51.
    Solbiati L, Goldberg SN, Ierace T, et al. Radiofrequency ablation of hepatic metastases: postprocedural assessment with a US microbubble contrast agent-early experience. Radiology 1999;211:643–649.PubMedGoogle Scholar
  52. 52.
    Hamberg LM, Hoop B, Hunter GJ, et al. Functional imaging with slip-ring CT and echo planar MRI: a preliminary report. Med Rev 1994;49: 10–19.Google Scholar
  53. 53.
    Miles KA, Hayball MP, Dixon AK. Functional imaging of changes in human intrarenal perfusion using quantitative dynamic computed tomography. Invest Radiol 1994;29:911–914.PubMedCrossRefGoogle Scholar
  54. 54.
    Miles KA, Hayball MP, Dixon AK. Measurement of human pancreatic perfusion using dynamic computed tomography with perfusion imaging. Br J Radiol 1995;68:471–475.PubMedCrossRefGoogle Scholar
  55. 55.
    Swensen SJ, Brown LR, Colby TV, et al. Lung nodule enhancement at CT: prospective findings. Radiology 1996;201:447–455.PubMedGoogle Scholar
  56. 56.
    Fukuya T, Honda H, Hayahi T, et al. Lymph-node metastases: efficacy of detection with helical CT in patients with gastric cancer. Radiology 1995; 197:705–711.PubMedGoogle Scholar
  57. 57.
    Leggett DAC, Miles KA, Kelley BB. Blood-brain barrier and blood volume imaging of cerebral glioma using functional CT: a pictorial review. Eur J Radiol 1999;30:185–190.PubMedCrossRefGoogle Scholar
  58. 58.
    Buadu L, Murakami J, Murayama S, et al. Breast lesions: correlation of contrast medium enhancement patterns on MR images with histopathologic findings and tumor angiogenesis. Radiology 1996;200:639–649.PubMedGoogle Scholar
  59. 59.
    Goldfarb JW, Prasad PV, Li W, et al. Dynamic contrast-enhanced breath-hold 3D magnetic resonance abdominal angiography and renal perfusion. Proc ISMRM 1997;1:200 (abstract).Google Scholar
  60. 60.
    Schoenberg SO, Knopp MV, Bock M, et al. Renal artery stenosis: grading of hemodynamic changes with cine phase-contrast MR blood flow measurements. Radiology 1997;203:45–53.PubMedGoogle Scholar
  61. 61.
    Stomper P, Herman S, Kippenstein D, et al. Suspect lesions: findings at dynamic gadoliniumenhanced MRI correlated with mammographic and pathologic features. Radiology 1995;197: 387–395.PubMedGoogle Scholar
  62. 62.
    Griebel J, Mayr NA,, de Vries A et al. Assessment of tumor microcirculation: a new role of dynamic contrast MR imaging. J Magn Reson Imaging 1997;7:111–119.PubMedCrossRefGoogle Scholar
  63. 63.
    Hawighorst H, Engenhart R, Knopp MV, et al. Intracranial meningiomas: time- and dosedependent effects of irradiation on tumor microcirculation by dynamic MR imaging. Magn Reson Med 1997;15:423–432.Google Scholar
  64. 64.
    Hawighorst H, Knàpstein PG, Schaeffer U, et al. Pelvic lesions in patients with treated cervical carcinoma; efficacy of pharmacokinetic analysis of dynamic MR images in distinguishing recurrent tumors from benign conditions. AJR (Am J Roentgenol) 1996;166:401–408.CrossRefGoogle Scholar
  65. 65.
    Frouge C, Guinebretiere J, Contesso G, et al. Correlation between contrast enhancement in dynamic magnetic resonance imaging of the breast and tumor angiogenesis. Invest Radiol 1994;29:1043–1049.PubMedCrossRefGoogle Scholar
  66. 66.
    Jain RK. Transport of molecules across tumor vasculature. Cancer Metasis Rev 1987;6:559–593.CrossRefGoogle Scholar
  67. 67.
    Gerlowski LE, Jain RK. Microvascular permeability of normal and neoplastic tissues. Microvasc Res 1986;31:288–305.PubMedCrossRefGoogle Scholar
  68. 68.
    Schwickert H, Stiskal M, van Dijke C, et al. Tumor angiography using high resolution 3D MRI: comparison of Gd-DTPA and a macromolecular blood pool contrast agent. Acad Radiol 1995;2:851–858.PubMedCrossRefGoogle Scholar
  69. 69.
    Weinmann H, Laniado M, Mutzel W. Pharmacokinetics of DTPA/dimeglumine after intravenous injection into healthy volunteers. Physiol Chem Phys Med NMR 1984;16:167–172.PubMedGoogle Scholar
  70. 70.
    Schmiedl U, Moseley ME, Ogan MD, et al. Comparison of initial biodistribution patterns of Gd-DTPA and albumin-Gd-DTPA using rapid spin echo imaging. J Comp Assist Tomogr 1987;11: 306–313.CrossRefGoogle Scholar
  71. 71.
    van Dijke C, Brasch R, Roberts T, et al. Mammary carcinoma model: correlation of macromolecular contrast enhanced MR imaging characterizations of tumor microvasculature and histologic capillary density. Radiology 1996;198: 813–818.PubMedGoogle Scholar
  72. 72.
    Schwickert H, Stiskal M, Roberts T, et al. Contrast-enhanced MRI assessment of tumor capillary permeability: the effect of pre-irradiation on the tumor delivery of chemotherapy. Radiology 1996;198:893–898.PubMedGoogle Scholar
  73. 73.
    Cohen F, Kuwatsuru R, Shames D, et al. Contrast enhanced MRI estimation of altered capillary permeability in experimental mammary carcinomas following x-radiation. Invest Radiol 1995; 29:970–977.CrossRefGoogle Scholar
  74. 74.
    Kuwatsuru R, Shames D, Mühler A, et al. Quantification of tissue plasma volume in the rat by contrast-enhanced magnetic resonance imaging. Magn Reson Med 1993;30:76–81.PubMedCrossRefGoogle Scholar
  75. 75.
    Brasch R, Pham C, Shames D, et al. Assessing tumor angiogenesis using macromolecular MR imaging contrast media. J Magn Reson Imaging 1997;7:68–74.PubMedCrossRefGoogle Scholar
  76. 76.
    Verstraete KL, De-Deene YD, Roels H, et al. Benign and malignant musculoskeletal lesions: dynamic contrast-enhanced MR imaging: parametric first-pass images depict tissue vascularization and perfusion. Radiology 1994;192: 835–843.PubMedGoogle Scholar
  77. 77.
    Degani H, Gussi V, Weinstein D, et al. Mapping pathophysiological features of breast tumors by MRI at high spatial resolution. Nat Med 1997;3: 780–782.PubMedCrossRefGoogle Scholar
  78. 78.
    Hoffmann U, Brix G, Knopp MV, et al. Pharmacokinetic mapping of the breast: a new method for dynamic MR-mammography. Magn Reson Med 1995;33:506–514.PubMedCrossRefGoogle Scholar
  79. 79.
    Brix G, Semmler W, Port R, et al. Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 1991;15: 621–627.PubMedCrossRefGoogle Scholar
  80. 80.
    Takashima S, Noguchi Y, Okumara T, et al. Dynamic MR imaging in the head and neck. Radiology 1993;189:813–821.PubMedGoogle Scholar
  81. 81.
    Hawighorst H, Weikel W, Knapstein PG, et al. Angiogenic activity of cervical carcinoma: assessment by functional magnetic resonance imaging-based parameters and a histomorphological approach in correlation with disease outcome. Clin Cancer Res 1998;4:2305–2312.PubMedGoogle Scholar
  82. 82.
    Brasch RC, Daldrup H, Shames D, et al. Macromolecular contrast media-enhanced MRI estimates of microvascular permeability correlate with histopathologic tumor grade. Acad Radiol 1998; 5 (suppl 1):S2-S5.CrossRefGoogle Scholar
  83. 83.
    Passe TJ, Bluemke DA, Siegelman SS. Tumor angiogenesis: tutorial on implications for imaging. Radiology 1997;203:593–600.PubMedGoogle Scholar
  84. 84.
    Roberts DA, Detre JA, Bolinger L, et al. Renal perfusion in humans: MR imaging with spin tagging of arterial water. Radiology 1995;196: 281–286.PubMedGoogle Scholar
  85. 85.
    Silva AC, Zhang W, Williams DS, et al. Estimation of water extraction fractions in rat brain using magnetic resonance measurement of perfusion with arterial spin labeling. Magn Reson Med 1997;35:58–68.CrossRefGoogle Scholar
  86. 86.
    Roberts DA, Rizi R, Lenkinski RE, et al. Magnetic resonance imaging of the brain: blood partition coefficient for water: application to spin-tagging measurement of perfusion. J Magn Reson Imaging 1996;6:363–366.PubMedCrossRefGoogle Scholar
  87. 87.
    Pekar J, Jezzard P, Roberts DA, et al. Perfusion imaging with compensation for asymmetric magnetization transfer effects. Magn Reson Med 1996;35:70–79.PubMedCrossRefGoogle Scholar
  88. 88.
    Zhang W, Silva AC, Williams DS, et al. NMR measurement of perfusion using arterial spin labeling without saturation of macromolecular spins. Magn Reson Med 1995;33:370–376.PubMedCrossRefGoogle Scholar
  89. 89.
    McLaughlin AC, Ye FQ, Pekar JJ, et al. Effects of magnetization transfer on the measurement of cerebral blood flow using steady-state arterial spin tagging approaches; a theoretical investigation. Magn Reson Med 1997;37:501–510.PubMedCrossRefGoogle Scholar
  90. 90.
    Williams DS, Grandis DJ, Zhang W, et al. Magnetic resonance imaging of perfusion in the isolated rat heart using spin inversion of arterial water. Magn Reson Med 1993;30:361–365.PubMedCrossRefGoogle Scholar
  91. 91.
    Walsh EG, Minematsu K, Leppo J, et al. Radioactive microsphere validation of a volume localized continuous saturation perfusion measurement. Magn Reson Med 1994;31:147–153.PubMedCrossRefGoogle Scholar
  92. 92.
    Tempel C, Neeman M. Perfusion of the rat ovary: application of pulsed arterial spin labeling MRI. Magn Reson Med 1999;41:113–123.PubMedCrossRefGoogle Scholar
  93. 93.
    Brooks PC, Clark RAF, Cheresh DA. Requirement of vascular integrin αvβ3 for angiogenesis. Science 1994;264:569–571.PubMedCrossRefGoogle Scholar
  94. 94.
    Brooks PC, Stromblad S, Klemke R, et al. Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest 1995;96:1815–1822.PubMedCrossRefGoogle Scholar
  95. 95.
    Gladson CL. Expression of integrin αvβ3 in small blood vessels of glioblastoma tumors. J Neuropathol Exp Neurol 1996;55:1143–1149.PubMedCrossRefGoogle Scholar
  96. 96.
    Sipkins DA, Cheresh DA, Kazemi MR, et al. Detection of tumor angiogenesis in vivo by αvβ3targeted magnetic resonance imaging. Nat Med 1998;4:623–626.PubMedCrossRefGoogle Scholar
  97. 97.
    Castillo M, Kwock L, Mukherji S. Clinical applications of proton MR spectroscopy. Am J NeuroRadiol 1996;17:1–15.PubMedGoogle Scholar
  98. 98.
    Kaplan O, Cohen J. Metabolism of breast cancer cells as revealed by non-invasive magnetic resonance spectroscopy studies. Breast Cancer Res Treat 1994;31:285–299.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Kenneth C. Wright
  • E. Edmund Kim

There are no affiliations available

Personalised recommendations