Imaging of Anticancer Drugs for Therapeutic Response and Prognosis

  • David J. Yang
  • Chun Li
  • E. Edmund Kim


To diagnose cancer, mammography is usually performed in patients with breast cancer; however, the detection rate is low among younger women because of their denser breast tissue. Computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound provide anatomical information but not functional information about cancer. These imaging modalities also are not helpful in assessing or predicting therapeutic response. Thus, to develop an imaging technique to predict the responsiveness of tumors to chemotherapy for individual patients would be most helpful. Drug targeting through a receptor or enzymaticmediated process is an effective way of cellselective drug delivery because this process allows a satisfactory transport rate as well as ligand-dependent cell specificity.


Breast Cancer Standardize Uptake Value None None Tamoxifen Therapy Folate Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dorr U, Rath U, Sautter-Bihl ML, et al. Improved visualization of carcinoid liver metastases by 111In-pentetreotide scintigraphy following treatment with cold somatostatin analogue. Eur J Nucl Med 1993;20:431–433.PubMedCrossRefGoogle Scholar
  2. 2.
    Adrian HJ, Dorr U, Bach D, et al. Biodistribution of 111In-pentetreotide and dosimetric considerations with respect to somatostatin receptor expressing tumor burden. Horm Metab Res (Suppl) 1993;27:18–23.Google Scholar
  3. 3.
    Breeman WA,, de Jong M, Bernard BF et al. Effects of ligand priming and multiple-dose injection on tissue uptake of 111In-pentetreotide in rats. Nucl Med Biol 1997;24:749–753.PubMedCrossRefGoogle Scholar
  4. 4.
    Dorr U, Frank-Raue K, Raue F, et al. The potential value of somatostatin receptor scintigraphy in medullary thyroid carcinoma. Nucl Med Commun 1993;14:439–445.PubMedCrossRefGoogle Scholar
  5. 5.
    Cowan DS, Melo T, Park L, Ballinger JR, et al. BMS181321 accumulation in rodent and human cells: the role of P-glycoprotein. Br J Cancer (Suppl) 1996;27:S264–S266.Google Scholar
  6. 6.
    Hall AV, Solanki KK, Vinjamuri S, et al. Evaluation of the efficacy of 99mTc-Infecton, a novel agent for detecting sites of infection. J Clin Pathol 1998;51:215–219.PubMedCrossRefGoogle Scholar
  7. 7.
    Vinjamuri S, Hall AV, Solanki KK, et al. Comparison of 99mTc infecton imaging with radiolabelled white-cell imaging in the evaluation of bacterial infection. Lancet 1996;347:233–235.PubMedCrossRefGoogle Scholar
  8. 8.
    Britton KE, Vinjamuri S, Hall AV, et al. Clinical evaluation of 99mTc-infecton for the localization of bacterial infection. Eur J Nucl Med 1997; 24:553–556.PubMedGoogle Scholar
  9. 9.
    Kairemo KJ, Ramsay HA, Paavonen T, et al. Imaging and staging of head and neck cancer using a low pH 111In-bleomycin complex. Eur J Cancer B Oral Oncol 1996;32B:311–321.CrossRefGoogle Scholar
  10. 10.
    Jekunen AP, Kairemo KJ, Ramsay HA, et al. Imaging of olfactory neuroblastoma by 111Inbleomycin complex. Clin Nucl Med 1996;21(2): 129–131.PubMedCrossRefGoogle Scholar
  11. 11.
    Goodwin DA, Meares CF, DeRiemer LH, et al. Clinical studies with 111In-BLEDTA, a tumorimaging conjugate of bleomycin with a bifunctional chelating agent. J Nucl Med 1981;22: 787–792.PubMedGoogle Scholar
  12. 12.
    Jaaskela-Saari HA, Kairemo KJ, Ramsay HA, et al. Labelling of bleomycin with Augeremitter increases cytotoxicity in squamous-cell cancer cell lines. Int J Radiat Biol 1998;73:565–570.PubMedCrossRefGoogle Scholar
  13. 13.
    Harrison K, Wagner NH Jr. Biodistribution of intravenously injected [14C] doxorubicin and [14C]daunorubicin in mice: concise communication. J Nucl Med 1978;19:84–86.PubMedGoogle Scholar
  14. 14.
    Fragu P, Klijanienko J, Gandia D, et al. Quantitative mapping of 4′-iododeoxyrubicin in metastatic squamous cell carcinoma by secondary ion mass spectrometry (SIMS) microscopy. Cancer Res 1992;52:974–977.PubMedGoogle Scholar
  15. 15.
    Westerhof GR, Jansen G, Emmerik NV, et al. Membrane transport of natural folates and antifolate compounds in murine L1210 leukemia cells: role of carrier- and receptor-mediated transport systems. Cancer Res 1991;51:5507–5513.PubMedGoogle Scholar
  16. 16.
    Orr RB, Kreisler AR, Kamen BA. Similarity of folate receptor expression in UMSCC 38 cells to squamous cell carcinoma differentiation markers. J Natl Cancer Inst 1995;87:299–303.PubMedCrossRefGoogle Scholar
  17. 17.
    Hsueh CT, Dolnick BJ. Altered folate-binding protein mRNA stability in KB cells grown in folate-deficient medium. Biochem Pharmacol 1993;45:2537–2545.PubMedCrossRefGoogle Scholar
  18. 18.
    Weitman SD, Lark RH, Coney LR, et al. Distribution of folate GP38 in normal and malignant cell lines and tissues. Cancer Res 1992;52:3396–3400.PubMedGoogle Scholar
  19. 19.
    Campbell IG, Jones TA, Foulkes WD, Trowsdale J. Folate-binding protein is a marker for ovarian cancer. Cancer Res 1991;51:5329–5338.PubMedGoogle Scholar
  20. 20.
    Holm J, Hansen SI, Hoier-Madsen M, Sondergaard K, Bzorek M. Folate receptor of human mammary adenocarcinoma. APMIS 1994;102:413–419.PubMedCrossRefGoogle Scholar
  21. 21.
    Ross JF, Chaudhuri PK, Ratnam M. Differential regulation of folate receptor isoforms in normal and malignant tissue in vivo and in established cell lines. Cancer (Phila) 1994;73:2432–2443.CrossRefGoogle Scholar
  22. 22.
    Franklin WA, Waintrub M, Edwards D, et al. New anti-lung-cancer antibody cluster 12 reacts with human folate receptors present on adenocarcinoma. Int J Cancer (Suppl) 1994;8:89–95.CrossRefGoogle Scholar
  23. 23.
    Weitman SD, Frazier KM, Kamen BA. The folate receptor in central nervous system malignancies of childhood. J Neuro-Oncol 1994;21: 107–112.CrossRefGoogle Scholar
  24. 24.
    Mathias CJ, Wang S, Lee RJ, et al. Tumorselective radiopharmaceutical targeting via receptor-mediated endocytosis of 67Gadeferoxamine-folate. J Nucl Med 1996;37: 1003–1008.PubMedGoogle Scholar
  25. 25.
    Wang S, Luo J, Lantrip DA, et al. Design and synthesis of [111In]DTPA-folate for use as a tumor-targeted radiopharmaceutical. Bioconjugate Chem 1997;8:673–679.CrossRefGoogle Scholar
  26. 26.
    Wang S, Lee RJ, Mathias CJ, et al. Synthesis, purification, and tumor cell uptake of 67Gadeferoxamine-folate, a potential radiopharmaceutical for tumor imaging. Bioconjugate Chem 1996;7:56–62.CrossRefGoogle Scholar
  27. 27.
    Mathias CJ, Wang S, Waters DJ, et al. 111InDTPA-folate as a radiopharmaceutical for targeting tumor-associated folate binding protein. J Nucl Med (Suppl) 1997;38:133Google Scholar
  28. 28.
    Mathias CJ, Hubers D, Trump DP, et al. Synthesis of 99mTc-DTPA-folate and preliminary evaluation as a folate-receptor-targeted radio-pharmaceutical. J Nucl Med (Suppl) 1997;38:87(abstract).Google Scholar
  29. 29.
    Schilsky RL. Antimetabolites. In: Perry MC, ed. The Chemotherapy Source Book. Baltimore: Williams & Williams, 1992:301–306.Google Scholar
  30. 30.
    Chabner BA. Promising new drugs and combinations. Fulfilling our pledge. Oncologist 1999; 4:VIII.Google Scholar
  31. 31.
    Deutsch JC, Elwood PC, Portillo RM, et al. Role of membrane-associated folate binding protein (folate receptor) in methotrexate transport by human KB cells. Arch Biochem Biophys 1989;274:327–337.PubMedCrossRefGoogle Scholar
  32. 32.
    Kane MA, Portillo RM, Elwood PC, et al. The influence of extracellular folate concentration on methotrexate uptake by human KB cells. J Biol Chem 1986;261:44–49.PubMedGoogle Scholar
  33. 33.
    Wang X, Shen F, Freisheim JH, et al. Differential stereospecificities and affinities of folate receptor isoforms for folate compounds and antifolates. Biochem Pharmacol 1992;44:1898–1901.PubMedCrossRefGoogle Scholar
  34. 34.
    Sierra EE, Brigle KE, Spinella MJ, et al. pH depedence of methotrexate transport by the reduced folate carrier and the folate receptor in L1210 leukemia cells. Further evidence for a third route mediated at low pH. Biochem Pharmacol 1997;53:223–231.PubMedCrossRefGoogle Scholar
  35. 35.
    Westerhof GR, Schornagel JH, Kathmann I, et al. Carrier- and receptor-mediated transport of folate antagonists targeting folate-dependent enzymes: correlates of molecular-structure and biological activity. Mol Pharmacol 1995;48:459–471.PubMedGoogle Scholar
  36. 36.
    Chung KN, Saiwaka Y, Paik TH, et al. Stable transfectants of human MCF-7 breast cancer cells with increased levels of the human folate receptor exhibit an increased sensitivity to antifolates. J Clin Invest 1993;91:1289–1294.PubMedCrossRefGoogle Scholar
  37. 37.
    Spinella MJ, Brigle KE, Freemantle SJ, et al. Comparison of methotrexate polyglutamation in L1210 leukemia cells when influx is mediated by reduced folate carrier or the folate receptor. Lack of evidence for influx route-specific effects. Biochem Pharmacol 1996;52:703–712.PubMedCrossRefGoogle Scholar
  38. 38.
    Sierra EE, Brigle KE, Spinella MJ, et al. Comparison of transport properties of the reduced folate carrier and folate receptor in murine L1210 leukemia cells. Biochem Pharmacol 1995;50:1287–1294.PubMedCrossRefGoogle Scholar
  39. 39.
    Spinella MJ, Brigle KE, Sierra EE, et al. Distinguishing between folate receptor-alphamediated transport and reduced folate carrier-mediated transport in leukemia cells. J Biol Chem 1995;270:7842–7849.PubMedCrossRefGoogle Scholar
  40. 40.
    Gehl J, Boesgaad M, Paaske T, et al. Paclitaxel and doxorubicin in metastatic breast cancer. Semin Oncol 1996;23(6 suppl 15):35–38.PubMedGoogle Scholar
  41. 41.
    Li C, Price JE, Milas L, et al. Antitumor activity of poly(L-glutamic acid)-paclitaxel on syngeneic and xenografted tumors. Clin Cancer Res 1999; 5:891–897.PubMedGoogle Scholar
  42. 42.
    Li C, Yu DF, Inoue T, et al. Synthesis, biodistribution and imaging properties of 111In-DTPA-paclitaxel in mice bearing mammary tumors. J Nucl Med 1997;38(7):1042–1047.PubMedGoogle Scholar
  43. 43.
    Inoue T, Li C, Yang DJ, et al. Evaluation of 111In-DTPA-paclitaxel scintigraphy to predict response on murine tumors to paclitaxel. Ann Nucl Med 1999;13:169–174.PubMedCrossRefGoogle Scholar
  44. 44.
    Milross CG, Mason KA, Hunter NR, et al. Preclinical antitumor activity of water-soluble paclitaxel derivatives. Cancer Chemother Pharmacol 1997;39:486–492.CrossRefGoogle Scholar
  45. 45.
    Rao CS, Chu JJ, Liu RS, et al. Synthesis and evaluation of [14C]-labelled and fluorescenttagged paclitaxel derivatives as new biological probes. Bioorg Med Chem 1998;6:2193–2204.PubMedCrossRefGoogle Scholar
  46. 46.
    Evangelio JA, Abal M, Barasoain I, et al. Fluorescent taxoids as probes of the microtubule cytoskeleton. Cell Motil Cytoskeleton 1998;39: 73–90.PubMedCrossRefGoogle Scholar
  47. 47.
    Jordan VC. The role of tamoxifen in the treatment and prevention of breast cancer. Curr Probl Cancer 1992;16:129–176.PubMedGoogle Scholar
  48. 48.
    Wittliff JL. Steroid-hormone receptors in breast cancer. Cancer Res 1994;53:630–643.Google Scholar
  49. 49.
    Dehdashiti F, McGuire AH, Van Brocklin HF, et al. Assessment of 21-[18F]fluoro-16α-ethyl-19-norprogesterone as a positron-emitting radiopharmaceutical for the detection of progestin receptors in human breast carcinomas. J Nucl Med 1991;32:1532–1537.Google Scholar
  50. 50.
    Mintun MA, Welch MJ, Siegel BA, et al. Breast cancer: PET imaging of estrogen receptors. Radiology 1988;169:45–48.PubMedGoogle Scholar
  51. 51.
    McGuire AH, Dehdashti F, Shiegel BA, et al. Positron tomographic assessment of 16α-[18F]fluoro-17β-estradiol uptake in metastatic breast carcinoma. J Nucl Med 1991;32:1526–1531.PubMedGoogle Scholar
  52. 52.
    Kiesewetter DO, Kilbourn MR, Landvatter SW, et al. Preparation of four fluorine-18-labeled estrogens and their selective uptake in target tissue of immature rats. J Nucl Med 1984;25: 1212–1221.PubMedGoogle Scholar
  53. 53.
    Brodack JW, Kilbourn MR, Welch MJ, et al. Application of robotics to radiopharmaceutical preparation: controlled synthesis of fluorine-18–16α-fluoroestradiol-17β. J Nucl Med 1986;27: 714–721.PubMedGoogle Scholar
  54. 54.
    Kenady DE, Pavlik EJ, Nelson K, et al. Images of estrogen-receptor-positive breast tumors produced by estradiol labeled with iodine 123I at 16α. Arch Surg 1993;128:1373–1381.PubMedCrossRefGoogle Scholar
  55. 55.
    Zielinski JE, Larner JM, Hoffer PB, et al. The synthesis of 11β-methoxy-[ 16α-123I]iodoestradiol and its interaction with the estrogen receptor in vivo and in vitro. J Nucl Med 1989;30:209–215.PubMedGoogle Scholar
  56. 56.
    Yang DJ, Cherif A, Tansey W, et al. N,N-Diethylfluoro-methyltamoxifen: synthesis assignment of 1H and 13C spectra and receptor assay. Eur J Med Chem 1992;27:919–924.CrossRefGoogle Scholar
  57. 57.
    Green S. Modulations of oestrogen receptor activity by oestrogens and antioestrogens. J Steroid Biochem Mol Biol 1990;37:747–751.PubMedCrossRefGoogle Scholar
  58. 58.
    O’Brian CA, Liskamp RM, Solomon DH, et al. Inhibition of protein kinase C by tamoxifen. Cancer Res 1985;45:2462–2465.PubMedGoogle Scholar
  59. 59.
    Edashige K, Sato E, Akimaru K, et al. Nonsteroidal antiestrogen suppresses protein kinase C: its inhibitory effect on interaction of substrate protein with membrane. Cell Struct Funct 1991; 16:273–281.PubMedCrossRefGoogle Scholar
  60. 60.
    Lam HY. Tamoxifen is a calmodulin antagonist in the activation of cAMP phosphodiesterase. Biochem Biophys Res Commun 1984;118:27–32.PubMedCrossRefGoogle Scholar
  61. 61.
    Pollak MN, Huynh HT, Lefevre SP. Tamoxifen reduces serum insulin-like growth factor 1 (IGF-1). Breast Cancer Res Treat 1992;22:91–95.PubMedCrossRefGoogle Scholar
  62. 62.
    Rose DP, Chlebowski RT, Connolly JM, et al. Effects of tamoxifen adjuvant therapy and a low-fat diet or serum binding proteins and estradiol bioavailability in postmenopausal breast cancer patients. Cancer Res 1992;52:5386–5390.PubMedGoogle Scholar
  63. 63.
    Harris JR, Morrow M, Bonadonna G. Cancer of the breast. In: DeVita VT, Hellman S Jr, Rosenberg SA, eds. Cancer: Principles & Practice of Oncology. Philadelphia: Lippincott, 1993:1264–1332.Google Scholar
  64. 64.
    Mullani NA, Gould KL, Hartz RK, et al. Design and performance of Posicam 6.5 BGO positron camera. J Nucl Med 1990;31:610–616.PubMedGoogle Scholar
  65. 65.
    Yang DJ, Kuang L-R, Cherif A, et al. Synthesis of [18F]fluoroalanine and [18F]fluorotamoxifen for imaging breast tumors. J Drug Targeting 1993;1:259–267.CrossRefGoogle Scholar
  66. 66.
    Yang DJ, Li C, Kuang L-R, et al. Imaging, biodistribution and therapy potential of halogenated tamoxifen analogues. Life Sci 1994;55:53–67.PubMedCrossRefGoogle Scholar
  67. 67.
    Yang DJ, Tewson T, Tansey W, et al. Halogenated analogues of tamoxifen: synthesis, receptor assay and inhibition of MCF7 cells. J Pharm Sci 1992; 81:622–625.PubMedCrossRefGoogle Scholar
  68. 68.
    Lien EA, Solheim E, Ueland PM. Distribution of tamoxifen and its metabolites in rat and human tissues during steady-state treatment. Cancer Res 1991;51:4837–4844.PubMedGoogle Scholar
  69. 69.
    Lien EA, Solheim E, Lea O, et al. Distribution of 4-hydroxy-N-desmethyltamoxifen and other tamoxifen metabolites in human biological fluids during tamoxifen treatment. Cancer Res 1989; 49:2175–2183.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • David J. Yang
  • Chun Li
  • E. Edmund Kim

There are no affiliations available

Personalised recommendations