Targeted Imaging of Lymph Nodes

  • E. Edmund Kim


Lymphatic tissues are involved in many pathological processes, and the status of lymphatic tissue is especially important for cancer staging [1]. Clinical classification schedules have been developed that assess the local tumor, regional nodes, and metastatic (TNM) predilection sites. Such TNM schemes rely heavily upon imaging.


Sentinel Node Lymphatic Vessel Trast Agent Antimony Sulfide Internal Mammary Node Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berek JS, Hacker NF, Fu YS. Adenocarcinoma of the uterine cervix: histologic variables associated with lymph node metastasis and survival. Obstet Gynecol 1985;65:46–51.PubMedGoogle Scholar
  2. 2.
    Mayerson HS, Wolfram CG, Shirley HH, Wasserman K. Regional differences in capillary permeability. Am J Physiol 1960;198:155–160.Google Scholar
  3. 3.
    Seymour LW, Duncan R, Stahalm J, Kopecek J. Effect of molecular weight of N-(2-hydroxypropyl)methacrylamide copolymers on body distribution and rate of excretion after subcutaneous, intraperitoneal and intravenous administration to rats. J Biomed Mater Res 1987;21: 1341–1346.PubMedCrossRefGoogle Scholar
  4. 4.
    Krag DN, Weaver DL, Alex JC, Fairbank JT. Surgical resection and radiolocalization of the sentinel lymph node in breast cancer using a gamma probe. Surg Oncol 1993;2:335–340.PubMedCrossRefGoogle Scholar
  5. 5.
    Krag DN, Ashikaga T, Harlow SP, Weaver DL. Development of sentinel node targeting technique in breast cancer patients. Breast J 1998; 4:67–74.CrossRefGoogle Scholar
  6. 6.
    Uren RF, Thompson JF, Howman-Giles R, Roberts JM. Sentinel lymph node detection and imaging. Eur J Nucl Med 1999;28:936–939.Google Scholar
  7. 7.
    Uren RF, Howman-Giles RB, Thompson JF, et al. Mammary lymphoscintigraphy in breast cancer. J Nucl Med 1995;36:1775–1780.PubMedGoogle Scholar
  8. 8.
    Borgstein PJ. SLN biopsy in breast cancer: guidelines and pitfalls of lymphoscintigraphy and gamma probe detection. J Am Coll Surg 1998; 186:275–283.PubMedCrossRefGoogle Scholar
  9. 9.
    Turner RR, Ollila DW, Krasne DL, Giuliano AE. Histopathological validation of the sentinel lymph node hypothesis for breast carcinoma. Ann Surg 1997;226:271–278.PubMedCrossRefGoogle Scholar
  10. 10.
    Joseph E, Brobeil A, Glass F, et al. Results of complete lymph node dissection in 83 melanoma patients with positive SLN. Ann Surg Oncol 1998;5:119–125.PubMedCrossRefGoogle Scholar
  11. 11.
    Reintgen D, Cruse CW, Wells K, et al. The orderly progression of melanoma nodal metastases. Ann Surg 1994;220:759–767.PubMedCrossRefGoogle Scholar
  12. 12.
    DeLand F, Kim EE, Corgan R. Axillary lymphoscintigraphy in radioimmunodetection of carcinoembryonic antigen in breast cancer. J Nucl Med 1979;20:1243–1250.Google Scholar
  13. 13.
    Nieweg OE, Kim EE, Wong WH, Broussard WF. Positron emission tomography with F-18 deoxyglucose in the detection and staging of breast cancer. Cancer (Phila) 1993;71:3920–3925.CrossRefGoogle Scholar
  14. 14.
    Bassa P, Kim EE, Inoue T, et al. Evauation of preoperative chemotherapy using PET with F-18 fluorodeoxyglucose in breast cancer. J Nucl Med 1996;37:931–938.PubMedGoogle Scholar
  15. 15.
    Papisov MI, Weissleder R, Bogdanor AA, Brady TJ. Intravenous lymph node-targeted carriers. In: Proceedings of International Symposium on Controlled Release of Bioactive Materials. Deerfield, IL: Controlled Release Society, 1994: 152–160.Google Scholar
  16. 16.
    Hirano K, Yamada H. Studies on the absorption of practically water-soluble drugs following injection. J Pharm Sci 1982;66:517–522.Google Scholar
  17. 17.
    Barnes JE. Characteristics and control of contrast in CT. Radiographics 1992;12:825–839.PubMedGoogle Scholar
  18. 18.
    Shen T, Weissleder R, Papisov MI, Bogdanov AA, Brady TJ. Monocrystalline iron oxide nanocompounds (MION). J Magn Reson Imaging 1993;29:599–604.Google Scholar
  19. 19.
    Weissleder R, Stark DD, Engelstad BL, et al. Superparamagnetic iron oxide: pharmacokinetics and toxicity. Am J Radiol 1989;152:167–192.Google Scholar
  20. 20.
    Papisov MI, Savelyer VY, Sergienko VB, Torchilin VP. Magnetic drug targeting. In vivo kinetics of radiolabeled magnetic drug carriers. Int J Pharm 1987;40:201–205.CrossRefGoogle Scholar
  21. 21.
    Weissleder R, Heautot JF, Schaeffer BK, Bogdanov A, Papisov M, Brady TJ. A high efficiency lymphotrophic agent for MR lymphography. Radiology 1994;191:225–230.PubMedGoogle Scholar
  22. 22.
    Tanoura T, Bernas M, Darkazanli A, et al. MR lymphography with iron oxide compound AMI-227. Am J Radiol 1992;159:875–881.Google Scholar
  23. 23.
    Patel H, Boodle C, Vaughan-Jones R. Assessment of the poteential uses of liposomes for lymphoscintigraphy and lymphatic drug delivery. Biochem Biophys Acta 1984;801:76–80.PubMedCrossRefGoogle Scholar
  24. 24.
    Hirano K, Hunt A. Lymphatic transport of liposome-encapsulated agents. J Pharm Sci 1985;74:915–919.PubMedCrossRefGoogle Scholar
  25. 25.
    Grant C, Karlik S, Florio E. A liposomal MRI contrast agent: phosphatidylethanolamine-DTPA. Magn Reson Med 1989;11:236–241.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • E. Edmund Kim

There are no affiliations available

Personalised recommendations