Targeted Positron Emission Tomography in Oncology

  • E. Edmund Kim
  • Franklin C. L. Wong


Positron emission tomography (PET) is a technology that provides functional imaging data of target organ perfusion and metabolism. PET has made it possible to visualize the mind, to detect viable myocardial tissue, and to assess the biomedical behavior of tumors [1–3]. Being aware of PET applications may allow physicians not only to obtain quick and correct diagnoses, but also to make cost-effective clinical decisions for patient treatment or follow-up.


Breast Cancer Positron Emission Tomography Standardize Uptake Value Positron Emission Tomography Study Solitary Pulmonary Nodule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Raichle ME. Visualizing the mind. Sci Am 1994; 270:51–64.CrossRefGoogle Scholar
  2. 2.
    Soufer R, Dey HM, Lawson AJ, et al. Relationship between reverse redistribution on planar thallium scintigraphy and regional myocardial viability. A correlative PET study. J Nucl Med 1995;36:180–187.PubMedGoogle Scholar
  3. 3.
    Braams JW, Prium J, Freling NJM, et al. Detection of lymph node metastases of squamous cell cancer of the head and neck with FDG-PET and MRI. J Nucl Med 1995;36:211–226.PubMedGoogle Scholar
  4. 4.
    Hoh CK, Swchiepers C, Seltzer MA, et al. PET in oncology: will it replace the other modalities? Semin Nucl Med 1997;27:94–106.PubMedCrossRefGoogle Scholar
  5. 5.
    Ishiwata K, Kubota K, Murakami M, et al. Reevaluation of amino acid PET studies: can the protein synthesis rates in brain and tumor tissues be measured in vivo? J Nucl Med 1993;34:1936–1943.PubMedGoogle Scholar
  6. 6.
    Rigo P, Paulus P, Kaschten BJ, et al. Oncological applications of positron emission tomography with F-18 fluorodeoxyglucose. Eur J Nucl Med 1996;23:1641–1674.PubMedCrossRefGoogle Scholar
  7. 7.
    Brown BS, Wahl RL. Overexpression of Glut-1-glucose transporter in human breast cancer: an immunohistochemical study. Cancer (Phila) 1993;72:2979–2985.CrossRefGoogle Scholar
  8. 8.
    Flanagan FL, Dehdashti F, Siegel BA. PET in breast cancer. Semin Nucl Med 1998;28:290–302.PubMedCrossRefGoogle Scholar
  9. 9.
    Zasadny K, Wahl RL. Standardized uptake valves of normal tissues at PET with 2-F-18-fluro-2-deoxy-D-glucose: variations with body weight and a method for correction. Radiology 1993;189:847–850.PubMedGoogle Scholar
  10. 10.
    Landis SH, Murray T, Bolden S, Wingo PA. Cancer statistics, 1999. CA Cancer J Clin 1999;49:8–31.PubMedCrossRefGoogle Scholar
  11. 11.
    Mack MJ, Hazelrigg SR, Landreneau RJ, et al. Thoracoscopy for the diagnosis of the indeterminate solitary pulmonary nodule. Ann Thorac Surg 1993;56:825–832.PubMedCrossRefGoogle Scholar
  12. 12.
    Kuriyama K, Tateishi R, Doi O, et al. Prevalence of airbronchogram in small peripheral carcinoma of the lung on the thin-section CT: comparison with benign tumors. AJR 1991;156:921–924.PubMedCrossRefGoogle Scholar
  13. 13.
    Patz EF, Lowe VJ, Hoffman JM, et al. Focal pulmonary abnormalities: evaluation with F-18 fluorodeoxyglucose PET scanning. Radiology 1993; 188:487–490.PubMedGoogle Scholar
  14. 14.
    Duhaylongsod FG, Lowe VJ, Patz EF, et al. Detection of primary and recurrent lung cancer by means of F-18 fluorodeoxyglucose PET. J Thorac Cardiovasc Surg 1995;110:130–140.PubMedCrossRefGoogle Scholar
  15. 15.
    Duhaylongsod FG, Lowe VJ, Patz EF, et al. Lung tumor growth correlates with glucose metabolism measured by FDG-PET. Ann Thorac Surg 1995;60:1348–1352.PubMedCrossRefGoogle Scholar
  16. 16.
    Webb WR, Gatsonis C, Zerhouni EA, et al. CT and MRI in staging non-small cell bronchogenic carcinoma: report of the radiologic diagnostic oncology group. Radiology 1991;178: 705–713.PubMedGoogle Scholar
  17. 17.
    Wahl RL, Quint LE, Greenough RL, et al. Staging of mediastinal non-small cell lung cancer with FDG PET, CT and fusion images: preliminary prospective evaluation. Radiology 1994; 191:371–377.PubMedGoogle Scholar
  18. 18.
    Patz ER, Lowe VG, Goodman PC, et al. Thoracic nodal staging with PET with F-18 FDG in patients with bronchogenic carcinoma. Chest 1994;108:1617–1621.CrossRefGoogle Scholar
  19. 19.
    Erasmus JJ, Patz EF, McAdams HP, et al. Evaluation of adrenal masses in patients with bronchogenic carcinoma using FDG-PET. AJR 1997; 168:1357–1360.PubMedCrossRefGoogle Scholar
  20. 20.
    Bury T, Dowlete A, Corhay JL, et al. Whole-body F-18 FDG in the staging of non-small cell lung cancer. Eur Respir J 1997;10:2529–2534.PubMedCrossRefGoogle Scholar
  21. 21.
    Ichija Y, Kuwabara Y, Sasaki M, et al. A clinical evaluation of FDG-PET to assess the response in radiation therapy for bronchogenic carcinoma. Ann Nucl Med 1996;10:193–200.CrossRefGoogle Scholar
  22. 22.
    Patz EF, Lowe VJ, Hoffman JM, et al. Persistent or recurrent bronchogenic carcinoma: detection with PET and F-18 FDG. Radiology 1994;191: 379–382.PubMedGoogle Scholar
  23. 23.
    Inoue T, Kim EE, Komaki R, et al. Detecting recurrent or residual lung cancer with FDG PET. J Nucl Med 1995;36:788–793.PubMedGoogle Scholar
  24. 24.
    Gambhir SS, Hoh CG, Phelps ME, et al. Decision tree sensitivity analysis for cost-effectiveness of FDG PET in the staging and management of non-small cell lung carcinoma. J Nucl Med 1996;37:1428–1436.PubMedGoogle Scholar
  25. 25.
    Tabar L, Faggerberg G, Chen HH, et al. Efficacy of breast cancer screening by age: new results from Swedish two-country trial. Cancer (Phila) 1995;75:2507–2514.CrossRefGoogle Scholar
  26. 26.
    Nieweg OE, Kim EE, Wong WH, et al. Positron emission tomography with F-128 deoxyglucose in the detection and staging of breast cancer. Cancer (Phila) 1993;71:3920–3925.CrossRefGoogle Scholar
  27. 27.
    Scheidhauer K, Scharl A, Pietrzyk K, et al. Quantitative F-18 FDG PET in primary breast cancer. Eur J Nucl 1996;23:618–623CrossRefGoogle Scholar
  28. 28.
    Hoh K, Hawkins RA, Glaspy JA, et al. Cancer detection with whole-body PET using F-18 fluoro-2-deoxy-D-glucose. J Comput Assist Tomogr 1993;17:582–589.PubMedCrossRefGoogle Scholar
  29. 29.
    Avil N, Dose F, Bense S, et al. Metabolic characterization of breast tumors with PET using F-18 fluorodeoxyglucose. J Clin Oncol 1996;14:1848–1857.Google Scholar
  30. 30.
    Tse NY, Hoh K, Hawkins RA, et al. The application of PET with fluorodeoxyglucose to the evaluation of breast disease. Ann Surg 1992; 216:27–34.PubMedCrossRefGoogle Scholar
  31. 31.
    Wahl RL, Helvic MA, Chang AE, et al. Detection of breast cancer in women after augmentation mammoplasty using F-18 deoxyglucose PET. J Nucl Med 1994;35:872–875.PubMedGoogle Scholar
  32. 32.
    Avil N, Dose J, Jäniicke F, et al. Assessment of axillary lymph node involvement in breast patients with PET using radiolabeled 2-F-18-fluoro-2-deoxy-D-glucose. J Natl Cancer Inst 1996;88:1204–1209.CrossRefGoogle Scholar
  33. 33.
    Adler LP, Crowe JP, Al-Kaisi NK, et al. Evaluation of breast masses and axillary lymph nodes with F-18 radiolabeled 2-F-18-fluoro-2-deoxy-D-glucose PET. Radiology 1993;187:743–750.PubMedGoogle Scholar
  34. 34.
    Haberkorn U, Reinhardt M, Strauss LG, et al. Metabolic design of combination therapy: use of enhanced fluorodeoxyglucose uptake caused by chemotherapy. J Nucl Med 1992;33:1981–1987.PubMedGoogle Scholar
  35. 35.
    Bassa P, Kim EE, Inoue T, et al. Evaluation of preoperative chemotherapy using PET with F-18 FDG in breast cancer. J Nucl Med 1996;37:931–938.PubMedGoogle Scholar
  36. 36.
    Ravdin PM, Green S, Dorr TM, et al. Prognostic significance of progesterone receptor levels in estrogen receptor positive patients with metastatic breast cancer treated with tamoxifen. J Clin Oncol 1992;10:1284–1291.PubMedGoogle Scholar
  37. 37.
    McGuire AH, Dehdashti F, Siegel BA, et al. Positron tomographic assessment of 16a-F-18-fluoro-17β-estradiol uptake in metastatic breast carcinoma. J Nucl Med 1991;32:1526–1531.PubMedGoogle Scholar
  38. 38.
    Dehdashti F, Mortimer JE, Siegel BA, et al. Positron tomographic assessment of estrogen receptors in breast cancer. Comparison with FDG-PET and in vitro receptor assays. J Nucl Med 1995;36:1766–1774.PubMedGoogle Scholar
  39. 39.
    Mortimer JE, Dehdashti F, Siegel BA, et al. Clinical correlation of FDG and FES-PET imaging with estrogen receptor and response to systemic therapy. Clin Cancer Res 1996;2:933–939.PubMedGoogle Scholar
  40. 40.
    Vogel CL, Schoenfelder J, Shemano I, et al. Worsening bone scan in the evaluation of antitumor response during hormonal therapy of breast cancer. J Clin Oncol 1995;13:1123–1128.PubMedGoogle Scholar
  41. 41.
    Dehdashti F, Flanagan FL, Siegel BA. PET assessment of metabolic flare in advanced breast cancer. Radiology 1997;205:220–225.Google Scholar
  42. 42.
    Keyes JW Jr, Watson NE Jr, Williams DW III, et al. FDG PET in head and neck cancer. AJR 1997;169:1663–1669.PubMedCrossRefGoogle Scholar
  43. 43.
    Anzai Y, Carroll WR, Quint DJ, et al. Recurrence of head and neck cancer after surgery or irradiation: prospective comparison of 2-deoxy-F-18-fluoro-D-glucose PET and MRI diagnoses. Radiology 1996;200:135–141.PubMedGoogle Scholar
  44. 44.
    Assar OS, Fischbein NJ, Caputo GR, et al. Metastatic head and neck cancer: role and usefulness of AFDG PET in locating occult primary tumors. Radiology 1999;210:177–181.Google Scholar
  45. 45.
    Flanagan FL, Dehdashti F, Siegel BA, et al. Staging of esophageal cancer with F-18 FDG PET. AJR 1997;168:417–424.PubMedCrossRefGoogle Scholar
  46. 46.
    Ito M, Lammertsma AA, Wise RSJ, et al. Measurement of regional cerebral blood flow and oxygen utilization in patients with cerebral tumors using 15O and positron emission tomography: analytical techniques and preliminary results. Neuroradiology 1982;23:63–74.PubMedCrossRefGoogle Scholar
  47. 47.
    Yamamoto YL, Thompson CJ, Meyer E, et al. Dynamic positron emission tomography for study of cerebral hemodynamics in a cross section of the head using positron-emitting 68Ga-EDTA and 77Kr. J Comp Assist Tomogr 1977;1:43.CrossRefGoogle Scholar
  48. 48.
    Baba T, Fukui M, Takeshita I, et al. Selective enhancement of intratumoral blood flow in malignant gliomas using intra-arterial adenosine triphosphate. J Neurosurg 1990;72(6):907–911.PubMedCrossRefGoogle Scholar
  49. 49.
    Nariai T, Senda M, Ishii K, et al. Threedimensional imaging of cortical structure, function and glioma for tumor resection. J Nucl Med 1997;38 (10):1563–1568.PubMedGoogle Scholar
  50. 50.
    Rhodes CG, Wise RJS, Gibbs JM, et al. In vivo disturbance of the oxidative metabolism of glucose in human cerebral gliomas. Ann Neurol 1982;14:614–626.CrossRefGoogle Scholar
  51. 51.
    Di Chiro G, De La Paz RL, Brooks RA, et al. Glucose utilization of cerebral gliomas measured by 18F-fluorodeoxyglucose and PET. Neurology 1982;32:1323–1329.PubMedCrossRefGoogle Scholar
  52. 52.
    Weber G. Enzymology of cancer cells I. N Engl J Med 1977;296:486–493.PubMedCrossRefGoogle Scholar
  53. 53.
    Kubota R, Kubota K, Yamada S, et al. Active and passive mechanisms of [fluorine-18] fluorodeeoxyvglucnce untake by nroliferating and prenecrotic cancer cells in vivo: a microautoradiographic study. J Nucl Med 1994;35:1067–1075.PubMedGoogle Scholar
  54. 54.
    Fulham MJ, Melisi JW, Nishimiya J, et al. Neuroimaging of juvenile pilocytic astrocytomas: an enigma. Radiology 1994;189(1):221–225.Google Scholar
  55. 55.
    Derlon J-M, Bourdet C, Bustany P, et al. [11C] L-Methionine uptake in gliomas. Neurosurgery (Baltim) 1989;25(5):720–728.CrossRefGoogle Scholar
  56. 56.
    Conti PS, Hilton J, Wong DF, et al. High performance liquid chromatography of carbon-11-labeled compounds. J Nucl Med 1994;21(8): 1045–1051.Google Scholar
  57. 57.
    Yung BCK, Wand GS, Blevins L, et al. In vivo assessment of dopamine receptor density in pituitary macroadenoma and correlation with in vitro assay. J Nucl Med 1993;34(5):133.Google Scholar
  58. 58.
    Pappata S, Cornu P, Samson Y, et al. PET study of carbon-11-PK-11195 binding to peripheral type benzodiazepine sites in glioblastoma: a case report. J Nucl Med 1991;32(8):1608–1610.PubMedGoogle Scholar
  59. 59.
    Lichtor J, Dohrmann GJ. Oxidative metabolism and glycolysis in benign brain tumors. J Neurosurg 1987;67:336–340.PubMedCrossRefGoogle Scholar
  60. 60.
    Valk PE, Budinger TF, Levin VA, et al. PET of malignant cerebral tumors after interstitial brachytherapy. J Neurosurg 1988;69:830–838.PubMedCrossRefGoogle Scholar
  61. 61.
    Gritters LS, Francis IR, Zasadny KR, et al. Initial assessment of positron emission tomography using 2-F-18 fluoro-2-deoxy-D-glucose in the imaging of malignant melanoma. J Nucl Med 1993;34:1420–1427.PubMedGoogle Scholar
  62. 62.
    Lindholm P, Leskinen S, Någren K, et al. Carbon11 methionine PET of malignant melanoma. J Nucl Med 1995;36:1806–1810.PubMedGoogle Scholar
  63. 63.
    Rodriguez M, Rehn S, Sundström C, Glimelius B. Predicting malignant grade with PET in non-Hodgkin’s lymphoma. J Nucl Med 1995;36: 1790–1796.PubMedGoogle Scholar
  64. 64.
    Leskinen-Kallio S, Ruotsalainen U, Någren K, et al. Uptake of C-11 methionine and F-18 FDG in non-Hodgkin’s lymphoma: a PET study. J Nucl Med 1991;32:1211–1218.PubMedGoogle Scholar
  65. 65.
    Newman JS, Francis LR, Kaminski ME, et al. Imaging of lymphoma with PET using F-18 FDG. Correlation with CT. Radiology 1994;190: 111–116.PubMedGoogle Scholar
  66. 66.
    Abdel-Nabi H, Doerr RJ, Lammonica DM, et al. Staging of primary colorectal carcinomas with fluorine-18-fluorodeoxyglucose whole-body PET: correlation with histopathologic and CT findings. Radiology 1998;206:755–760.PubMedGoogle Scholar
  67. 67.
    Falk PM, Gupa NC, Thorson AG. Positron emission tomography for preoperative staging of colorectal carcinoma. Dis Colon Rectum 1994;37:153–156.PubMedCrossRefGoogle Scholar
  68. 68.
    Powers TA, Wright JK Jr, Chapman WC, et al. Staging recurrent metastatic colorectal carcinoma with PET. J Nucl Med 1997;38:1196–1201.PubMedGoogle Scholar
  69. 69.
    Strauss LG, Conti PS. The applications of PET in clinical oncology. J Nucl Med 1991;32:623–648.PubMedGoogle Scholar
  70. 70.
    Haberkorn U, Strauss LG, Dimitrakopoulou A. PET studies of fluorodeoxyglucose metabolism in patients with recurrent colorectal tumors receiving radiotherapy. J Nucl Med 1991;32: 1485–1490.PubMedGoogle Scholar
  71. 71.
    Haberkorn U, Reinhardt M, Strauss LG. Metafluorodeoxyglucose uptake caused by chemotherapy. J Nucl Med 1992;33:2981–2987.Google Scholar
  72. 72.
    Dimitrakopoulou-Strauss LG, Schlag P, Hohenberger P, et al. Intravenous and intra-arterial oxygen-15 labeled water and fluorine-15 labeled fluorouracil in patients with liver metastases from colorectal carcinoma. J Nucl Med 1998; 39:465–473.PubMedGoogle Scholar
  73. 73.
    Zinny M, Bares R, Fab J, et al. Fluorine-18-fluorodeoxyglucose positron emission tomography in the differential diagnosis of pancreatic carcinoma: a report of 106 cases. Eur J Nucl Med 1997;24:678–682.Google Scholar
  74. 74.
    Shreve PD, Gross MD. Imaging of the pancreas and related disease with PET carbon-11 acetate. J Nucl Med 1997;38:1305–1310.PubMedGoogle Scholar
  75. 75.
    Adams S, Baum R, Rink T, et al. Limited value of fluorine-18 fluorodeoxyglucose positron emission tomography for the imaging of neuroendocrine tumors. Eur J Nucl Med 1998; 25:79–83.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • E. Edmund Kim
  • Franklin C. L. Wong

There are no affiliations available

Personalised recommendations