Targeted Single Photon Emission Computed Tomography in Oncology

  • E. Edmund Kim
  • Franklin C. L. Wong


The practice of oncology is under going significant advances, and better understanding of molecular biology along with new diagnostic techniques and chemotherapeutic agents have improved the management of many cancer patients. Nuclear imaging can provide important information regarding tumor diagnosis, staging, detection of relapse or residual tumor, response to therapy, and prognosis for a variety of tumors. Currently available images have high diagnostic sensitivity, but low specificity. The use of the tomographic concept in nuclear medicine is as old as the art of radionuclide imaging itself. Single photon and positron emission tomography aim to reconstruct a three-dimensional image displaying the distribution of a radiotracer administered to a patient.


Parathyroid Adenoma 201TI Uptake Oral Cathartic Diffuse Lung Uptake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Silberstein EB, Fernando-Ulloa M, Hall J. Are oral cathartics of value in optimizing the gallium scan? J Nucl Med 1981;22:424–427.PubMedGoogle Scholar
  2. 2.
    Engelstad B, Luk SS, Hattner RS. Altered Ga-67 citrate distribution in patients with multiple red blood cell transfusions. AJR 1982;139:755–759.PubMedCrossRefGoogle Scholar
  3. 3.
    McLaughlin AF, Magee MA, Greenough R, et al. Current role of gallium scanning in the management of lymphoma. Eur J Nucl Med 1990;16: 755–771.PubMedCrossRefGoogle Scholar
  4. 4.
    Front D, Israel O. The role of Ga-67 scintigraphy in evaluating the results of therapy of lymphoma patients. Semin Nucl Med 1995;25:60–71.PubMedCrossRefGoogle Scholar
  5. 5.
    Front D, Ben-Haim S, Israel O, et al. Lymphoma: predictive value of Ga-67 scintigraphy after treatment. Radiology 1992;182:359–363.PubMedGoogle Scholar
  6. 6.
    Kostakoglu L, Yeh SD, Portlock C, et al. Validation of gallium-67 citrate single photon emission tomography in biopsy-confirmed residual Hodgkin’s disease in the mediastinum. J Nucl Med 1992;33:345–350.PubMedGoogle Scholar
  7. 7.
    Sanrock D, Iastoria S, Magrath IT, et al. The role of gallium-67 tumor scintigraphy in patients with small non-cleaved cell lymphoma. Eur J Nucl Med 1993;20:119–122.Google Scholar
  8. 8.
    Champion PE, Groshar D, Hooper IIR, et al. Does gallium uptake in the pulmonary hila predict involvement by non-Hodgkin’s lymphoma. Nucl Med Commun 1992;13:730–737.PubMedGoogle Scholar
  9. 9.
    Bar-Shalom R, Israel O, Haim N, et al. Diffuse lung uptake of Ga-67 after treatment of lymphoma: is it of clinical importance? Radiology 1996;199:473–476.PubMedGoogle Scholar
  10. 10.
    Abdel-Dayem HM, Scott AN, Macapinlac H, et al. Tracer imaging in lung cancer. Eur J Nucl Med 1994;21:57–81.PubMedCrossRefGoogle Scholar
  11. 11.
    Kwekkeboom DJ, Kho GS, Lamberts SW, et al. The value of octreotide scintigraphy in patients with lung cancer. Eur J Nucl Med 1994;21: 1106–1113.PubMedCrossRefGoogle Scholar
  12. 12.
    Sostre S, Villagra D, Morales ME, et al. Dualtracer scintigraphy and subtraction studies in the diagnosis of hepatocellular carcinoma. Cancer (Phila) 1988;61:670–672.CrossRefGoogle Scholar
  13. 13.
    Beckerman C, Hoffer PB, Bitran JD. The role of gallium-67 in clinical evaluation of cancer. Semin Nucl Med 1984;14:296–322.CrossRefGoogle Scholar
  14. 14.
    Front D, Bar-Shalom R, Israel O. The continuing clinical role of gallium-67 scintigraphy in the age of receptor imaging. Semin Nucl Med 1997;27: 68–74.PubMedCrossRefGoogle Scholar
  15. 15.
    Kaplan WD, Jochelson MS, Herman TS, et al. Ga67 imaging: a predictor of residual tumor viability and clinical outcome in patients with diffuse large cell lymphoma. J Clin Oncol 1990;8:1966–1970.PubMedGoogle Scholar
  16. 16.
    Carvalho PA, Schwartz RB, Alexander E, et al. Detection of recurrent gliomas with quantitative thallium-201/Tc-99m HMPAO SPECT. J Neurosurg 1992;77:565–570.PubMedCrossRefGoogle Scholar
  17. 17.
    Dierckx TA, Martin JJ, Dobbeleir A, et al. Sensitivity and specificity of Tl-201 SPECT in the functional detection and differential diagnosis of brain tumors. Eur J Nucl Med 1994;21:621–633.PubMedCrossRefGoogle Scholar
  18. 18.
    Kahn D, Follett KA, Bushnell DL, et al. Diagnosis of recurrent brain tumor: value of Tl-201 SPECT vs. F-18 FDG PET. AJR 1994;163: 1459–1465.PubMedCrossRefGoogle Scholar
  19. 19.
    O’Malley JP, Ziessman HA, Kumar PN, et al. Diagnosis of intracranial lymphoma in patients with AIDS: value of Tl-201 SPECT. AJR 1994; 163:417–421.PubMedCrossRefGoogle Scholar
  20. 20.
    Lorberboym M, Murthy S, Cechanick JI, et al. Thallium-201 and iodine-131 scintigraphy in differentiated thyroid carcinoma. J Nucl Med 1996;37:1487–1491.PubMedGoogle Scholar
  21. 21.
    Matsuno S, Tanabe M, Kawasaki Y, et al. Effectiveness of planar image and SPECT of Tl-201 compared with Ga-67 in patients with primary lung cancer. Eur J Nucl Med 1992; 19:86–95.PubMedCrossRefGoogle Scholar
  22. 22.
    Waxman AD, Ramanna L, Memsic LD, et al. Tl-201 scintigraphy in the evaluation of mass abnormalities of the breast. J Nucl Med 1993; 34:18–23.PubMedGoogle Scholar
  23. 23.
    Ohtomo K, Terni S, Yodoyama R, et al. Tl-201 scintigraphy to assess effect of chemotherapy in osteosarcoma. J Nucl Med 1996;37:1444–1448.PubMedGoogle Scholar
  24. 24.
    Abdel-Dayem HM, Bag R, DiFabrizio L, et al. Evaluation of sequential thallium and gallium scans of the chest in AIDS patients. J Nucl Med 1996;37:1662–1667.PubMedGoogle Scholar
  25. 25.
    Rao VV, Chiu ML, Kronauge JF, Pwinica-Worms D. Expression of recombinant human multidrug resistance P-glycoprotein in insect cells confers decreased accumulation of Tc-99m sestamibi. J Nucl Med 1994;35:510–515.PubMedGoogle Scholar
  26. 26.
    O’Tuama LA, Treves ST, Larar JN, et al. Tl-201 versus Tc-99m MIBI SPECT in evaluation of childhood brain tumors. J Nucl Med 1993; 34:1045–1051.PubMedGoogle Scholar
  27. 27.
    Khalkhali I, Cutrone JA, Mena IG, et al. Scintimammography: the complementary role of Tc-99m sestamibi prone breast imaging for the diagnosis of breast carcinoma. Radiology 1995; 196:421–426.PubMedGoogle Scholar
  28. 28.
    Waxman AD. The role of Tc-99m methoxyisobutylisonitrile in imaging breast cancer. Semin Nucl Med 1997;27:40–54.PubMedCrossRefGoogle Scholar
  29. 29.
    Taki J, Sumiya H, Tsuchiya H, et al. Evaluating benign and malignant bone and soft tissue lesions with Tc-99m MIBI scintigraphy. J Nucl Med 1997;38:501–506.PubMedGoogle Scholar
  30. 30.
    Soderlund V, Johnson C, Bauer HCF, et al. Comparison of Tc-99m MIBI and Tc-99m tetrofosmin uptake by musculoskeletal sarcomas. J Nucl Med 1997;38:682–686.PubMedGoogle Scholar
  31. 31.
    Irvin GL, Prudhomme DL, Deriso GT, et al. A new approach to parathyroidectomy. Ann Surg 1994;219:579–581.CrossRefGoogle Scholar
  32. 32.
    Aigner RM, Fueger GF, Nicoletti R. Parathyroid scintigraphy: comparison of Tc-99m MIBI and Tc-99m tetrofosmin studies. Eur J Nucl Med 1996;23:693–696PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • E. Edmund Kim
  • Franklin C. L. Wong

There are no affiliations available

Personalised recommendations