Advertisement

The Distribution of the Sample Variance Under Normality

Comments on Helmert (1876b)
  • H. A. David
  • A. W. F. Edwards
Part of the Springer Series in Statistics book series (SSS)

Abstract

The article translated here is actually just one part, with its own title, of a three-part paper that slays several dragons (Helmert, 1876b). Let X 1,..., X n be independent N(µ, σ 2) variates. In the omitted portions Helmert derives essentially the variance of the mean deviation and of the mean difference .

Keywords

Flawed Investigation Posterior Mode Modern Reader Exact Variance Successive Linear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbe, E. (1863). Ueber die Gesetzmässigkeit in der Vertheilung der Fehler bei Beobachtungsreihen. Gesammelte Abhandlungen, Vol. 2. Gustav Fischer, Jena.Google Scholar
  2. Bienaymé, I.-J. (1852). Sur la probabilité des erreurs d’après la méthode des moindres carrés. J. math. pures et appliquées, 17 33–78.Google Scholar
  3. Czuber, E. (1891). Theorie der Beobachtungsfehler. Teubner, Leipzig.zbMATHGoogle Scholar
  4. David, H.A. (1998). Early measures of variability. Statist. Sci., 13, 368–377.MathSciNetzbMATHCrossRefGoogle Scholar
  5. Fisher, R. A. (1920). A mathematical examination of the methods of determining the accuracy of an observation by the mean error, and by the mean square error. Mon. Not. R. Astron. Soc., 80, 758–770. [Reprinted as Paper 2 in Fisher (1950).]Google Scholar
  6. Fisher, R.A. (1950). Contributions to Mathematical Statistics. Wiley, New York.zbMATHGoogle Scholar
  7. Gauss, C.F.(1816). Bestimmung der Genauigkeit der Beobachtungen. In Carl Friedrich Gauss Werke, Vol. 4. Göttingen: Königliche Gesellschaft der Wissenschaften, 1880, pp. 109–117.Google Scholar
  8. Gauss, C.F. (1821, 1823, 1826). Theoria combinationis observationum erroribus minimis obnoxiae. In Carl Friedrich Gauss Werke, Vol. 4. Göttingen: Königliche Gesellschaft der Wissenschaften, 1880, pp. 3–93. [English translation by Stewart (1995).]Google Scholar
  9. Hald, A. (1952). Statistical Theory with Engineering Applications. Wiley, New York.zbMATHGoogle Scholar
  10. Hald, A. (1998). A History of Mathematical Statistics from1750 to 1930. Wiley, New York.Google Scholar
  11. Hald, A. (2000). Pizzetti’s contributions to the statistical analysis of normally distributed observations, 1891. Biometrika, 87, 213–217.MathSciNetzbMATHCrossRefGoogle Scholar
  12. Helmert, F.R. (1875). Ueber die Berechnung des wahrscheinlichen Fehlers aus einer endlichen Anzahl wahrer Beobachtungsfehler. Zeit. Math. u. Phys., 20, 300–303.zbMATHGoogle Scholar
  13. Helmert, F.R. (1876a). Ueber die Wahrscheinlichkeit der Potenzsummen der Beobachtungsfehler und über einige damit im Zusammenhange stehende Fragen. Zeit. Math. u. Phys., 21, 192–218.zbMATHGoogle Scholar
  14. Helmert, F.R. (1876b). Die Genauigkeit der Formel von Peters zur Berechnung des wahrscheinlichen Fehlers directer Beobachtungen gleicher Genauigkeit. Astron. Nachr., 88, 113–132.CrossRefGoogle Scholar
  15. Pearson, K. (1900). On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. , Phil. Mag. 5th Series, 50, 157–175.zbMATHCrossRefGoogle Scholar
  16. Pearson, K. (1931). Historical note on the distribution of the standard deviations of samples of any size drawn from an indefinitely large normal parent population. Biometrika, 23, 416–418.Google Scholar
  17. Pizzetti, P. (1891). I fundamenti matematici per la critica dei resultati sperimentali. Genoa. Reprinted as Vol. 3 in Biblioteca di “Statistica” (1963). “Statistica,” Bologna. Page reference is to the 1963 reprint.Google Scholar
  18. Sheynin, O. (1995). Helmert’s work in the theory of errors. Arch. Hist. Exact Sci., 49, 73–104.MathSciNetzbMATHCrossRefGoogle Scholar
  19. Stewart, G.W. (1995). Theory of the Combination of Observations Least Subject to Errors. SIAM, Philadelphia. [Translation of Gauss (1821, 1823, 1826).]Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • H. A. David
    • 1
  • A. W. F. Edwards
    • 2
  1. 1.Statistical Laboratory and Department of StatisticsIowa State UniversityAmesUSA
  2. 2.Gonville and Caius CollegeCambridgeUK

Personalised recommendations