Skip to main content

Solid-Fluid Systems with Large Specific Interfacial Area

  • Chapter
  • 772 Accesses

Part of the book series: Mechanical Engineering Series ((MES))

Abstract

The interfacial heat transfer rate for a solid-fluid system with an interfacial area A sf and a local (varying over the surface) surface-convection heat flux q sf = q ku is

$$ {Q_{sf}} = {Q_{ku}} = {A_{sf}}{\left\langle {{q_{sf}}} \right\rangle _D} $$
(5.1)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, K.G., and Jackson, R., 1992, “A Comparison of the Solutions of Some Proposed Equations of Motion of Granular Materials for Fully Developed Flow Down Inclined Planes,” J. Fluid Mech., 241, 145–168.

    Article  ADS  Google Scholar 

  • Beck, N.C., and Hayhurst, A.N., 1990, “The Early Stages of the Combustion of Pulverized Coal at High Temperatures. I: The Kinetics of Devolatilization,” Combust. Flame, 79, 47–74.

    Article  Google Scholar 

  • Bellan, J., and Harstad, K., 1987, “The Details of the Convective Evaporation of Dense and Dilute Clusters of Drops,” Int. J. Heat Mass Transfer, 30, 1083–1093.

    Article  ADS  Google Scholar 

  • Ben-Ammar, F., Kaviany, M., and Barber, J.R., 1992, “Heat Transfer During Impact,” Int. J. Heat Mass Transfer, 35, 1495–1506.

    Article  Google Scholar 

  • Binder, J.L., and Hanratty, J.J., 1993, “Use of Lagrangian Statistics to Describe Slurry Transport,” AIChE J., 39, 1581–1591.

    Article  Google Scholar 

  • Blake, T.R., and Libby, P.A., 1991, “Combustion of a Spherical Carbon Particle in Slow Viscous Flow,” Combust. Flame, 86, 147–161.

    Article  Google Scholar 

  • Buckmaster, J., and Takeno, T., 1981, “Blow-off and Flashback of an Excess Enthalpy of an Excess Enthalpy Flame,” Combust. Sci. Technol., 25, 153–158.

    Article  Google Scholar 

  • Carboneil, R.G., and Whitaker, S., 1984, “Heat and Mass Transfer in Porous Media,” in Fundamentals of Transport Phenomena in Porous Media, Bear, J., and Corapcioglu, M.Y., Editors, Martinus Nijhoff Publishers, Dordrecht.

    Google Scholar 

  • Cebeci, T., and Bradshaw, P., 1984, Physical and Computational Aspects of Convection Heat Transfer, Springer-Verlag, New York.

    Book  Google Scholar 

  • Chang, C.H., and Pfender, E., 1990, “Heat and Momentum Transport to Particulates Injected into Low-Pressure (~ 80 mbar) Nonequilibrium Plasmas,” IEEE Trans. on Plasma Sci., 18, 958–967.

    Article  ADS  Google Scholar 

  • Chen, X., and Pfender, E., 1983, “Behavior of Small Particles in a Thermal Plasma Flow,” Plasma Chem. Plasma Process., 3, 351–366.

    Article  Google Scholar 

  • Clift, R., Grace, J.R., and Weber, M.E., 1978, Bubbles, Drops and Particles, Academic Press, New York.

    Google Scholar 

  • Coudrec, J.-R, 1985, “Incipient Fluidization and Particulate Systems,” in Fluidization, Davidson, J.F., et al., Editors, Second Edition, Academic Press, London.

    Google Scholar 

  • Echigo, R., 1991, “Radiation-Enhanced/Controlled Phenomena of Heat and Mass Transfer in Porous Media,” Proceedings ASME-JSME Thermal Engineering Conference, Volume 4, xxi–xxxii.

    Google Scholar 

  • Elghobashi, S., and Truesdell, G.C., 1992, “Direct Simulation of Particle Dispersion in a Decaying Isotropic Turbulence,” J. Fluid Mech., 242, 655–700.

    Article  ADS  Google Scholar 

  • Farber, L., and Depew, C.A., 1963, “Heat Transfer Effects to Gas-Solids Mixtures Using Solid Spherical Particles of Uniform Size,” I & EC Fundamentals, 2, 130–135.

    Article  Google Scholar 

  • Fatehi, M., and Kaviany, M., 1997, “Role of Gas-Phase Reaction and Gas-Solid Thermal Nonequilibrium in Reverse Combustion,” Int. J. Heat Mass Transfer, 40, 2607–2620.

    Article  MATH  Google Scholar 

  • Giedt, W.H., and Willis, D.R., 1985, “Rarefied Gases,” in Handbook of Heat Transfer: Fundamentals, Rohsenow, W.M., Editor, Second Edition, McGraw-Hill, New York.

    Google Scholar 

  • Goddard, R., and Chang, J.-S., 1980, “Local and Total Heat Transfer on a Sphere in a Free Molecular Ionized Gas Flow,” J. Phys. D: Appl. Phys., 13, 2005–2012.

    Article  ADS  Google Scholar 

  • Golombok, M., Prothero, A., Shirvill, L.C., and Small, L.M., 1991, “Surface Combustion in Metal Fibre Burner,” Combust. Sci. Technol., 77, 203–223.

    Article  Google Scholar 

  • Gunn, D.J., 1978, “Transfer of Heat or Mass to Particles in Fixed and Fluidized Beds,” Int. J. Heat Mass Transfer, 21, 467–476.

    Article  Google Scholar 

  • Hanamura, K., Echigo, R., and Zhdank, S.A., 1993, “Superadiabatiac Combustion a Porous Medium,” Int. J. Heat Mass Transfer, 36, 3201–3209.

    Article  Google Scholar 

  • Honda, T., Hayashi, T., and Kanzawa, A., 1981, “Heat Transfer from Rarefied Ionized Argon Gas to a Biased Tungsten Fine Wire,” Int. J. Heat Mass Transfer, 24, 1247–1255.

    Article  ADS  Google Scholar 

  • Hsiau, S.S., and Hunt, M.L., 1993, “Kinetic Theory Analysis of Flow-Induced Particle Diffusion and Thermal Conduction in Granular Material Flows,” ASME J. Heat Transfer, 115, 541–548.

    Article  Google Scholar 

  • Hsu, P.-F., Howell, J.R., and Mathews, R.D., 1991, “A Numerical Investigation of Premixed Combustion within Porous Inert Media,” Proceedings ASME-JSME Thermal Engineering Conference, Volume 4, 225–231.

    Google Scholar 

  • Incropera, F.P., and DeWitt, D.P., 1990, Introduction to Heat Transfer, Second Edition, John Wiley and Sons, New York.

    Google Scholar 

  • Jackson, R., 1985, “Hydrodynamic Stability of Fluid-Particle Systems,” in Fluidization, Second Edition, Davidson, J.F., et al., Editors, Academic Press, London.

    Google Scholar 

  • Ji, C.-C, and Cohen R.D., 1992, “An Investigation of the Combustion of Pulverized Coal-Air Mixture in Different Combustor Geometries,” Combust. Flame, 90, 307–343.

    Article  Google Scholar 

  • Kaviany, M., 1999, Principles of Heat Transfer in Porous Media, Corrected Second Edition, Springer-Verlag, New York.

    Google Scholar 

  • Kaviany, M., 2001, Principles of Heat Transfer, John Wiley and Sons, New York, in press.

    Book  MATH  Google Scholar 

  • Konuma, M., 1992, Film Deposition by Plasma Techniques, Springer-Verlag, New York.

    Book  Google Scholar 

  • Kuipers, J.A.M., Prins, W., and van Swaaij, W.P.M., 1992, “Numerical Calculations of Wall-to-Bed Heat Transfer Coefficients in Gas-Fluidized Beds,” AIChE J., 38, 1079–1091.

    Article  Google Scholar 

  • Lahey, R.T., Jr., and Drew, D.A., 1989, “The Three-Dimensional Time- and Volume-Averaged Conservation Equations for Two-Phase Flows,” Advan. Nuclear Sci. Tech., 20, 1–69.

    Article  Google Scholar 

  • Lau, C.W., and Niksa, S., 1991, “The Combustion of Individual Particles of Various Coal Types,” Combust. Flame, 90, 45–70.

    Google Scholar 

  • Leveroni, E., and Pfender, E., 1990, “A Unified Plasma-Particle Heat Transfer Under Noncontinuum and Nonequilibrium Conditions,” Int. J. Heat Mass Transfer, 33, 1497–1509.

    Article  Google Scholar 

  • Louge, M., Yusef, M.J., and Jenkins, J.T., 1993, “Heat Transfer in the Pneumatic Transport of Massive Particles,” Int. J. Heat Mass Transfer, 36, 265–275.

    Article  ADS  MATH  Google Scholar 

  • Louge, M.Y., Mastorakos, E., and Jenkins, J.T., 1991, “The Role of Particle Collisions in Pneumatic Transport,” J. Fluid Mech., 231, 345–359.

    Article  ADS  MATH  Google Scholar 

  • Lu, Q.Q., Fontaine, J.R., and Aubertin, G., 1993, “Numerical Study of the Solid Particle Motion in Grid-Generated Turbulent Flows,” Int. J. Heat Mass Transfer, 36, 79–87.

    Article  Google Scholar 

  • Makino, A., 1992, “An Approximate Explicit Expression for the Combustion Rate of a Small Carbon Particle,” Combust. Flame, 90, 143–154.

    Article  Google Scholar 

  • Maloney, D.J., Monazam, E.R., Woodruff, S.D., and Lawson, L.O., 1991, “Measurement and Analysis of Temperature Histories and Size Changes for Single Carbon and Coal Particles During the Early Stages of Heating and Devolatiliza-tion,” Combust. Flame, 84, 210–220.

    Article  Google Scholar 

  • Mcintosh, A.C., and Prothero, A., 1991, “A Model of Large Heat Transfer Surface Combustion with Radiant Heat Emission,” Combust. Flame, 83, 111–126.

    Article  Google Scholar 

  • Michaelides, E.E., and Lasek, A., 1987, “Fluid-Solids Flow with Thermal and Hydrodynamic Nonequilibrium,” Int. J. Heat Mass Transfer, 30, 2663–2669.

    Article  Google Scholar 

  • Michaelides, E.E., Liang, L., and Lasek, A., 1992, “The Effect of Turbulence on the Phase Change of Droplets and Particles under Nonequilibrium Conditions,” Int. J. Heat Mass Transfer, 35, 2069–2076.

    Article  Google Scholar 

  • Michaelides, M. and Feng, Z., 1994, “Heat Transfer from a Rigid Sphere in a Nonuniform Flow and Temperature Field,” Int. J. Heat Mass Transfer, 37, 2069–2076.

    Article  MATH  Google Scholar 

  • Niksa, S., and Kerstein, A., 1991, “FLASHCHAIN Theory for Rapid Coal Volatilization Kinetics. 1. Formulation” Energy Fuels, 5, 647–665.

    Article  Google Scholar 

  • Parthasarathy, R.N., and Faeth, G.M., 1990, “Turbulent Modulation in Homogeneous Dilute Particle-Laden Flows, and Turbulent Dispersion of Particles in Self-Generated Homogeneous Turbulence,” J. Fluid Mech., 220, 485–537.

    Article  ADS  Google Scholar 

  • Quintard, M., Kaviany, M., and Whitaker, S., 1997, “Two-Medium Treatment of Heat Transfer in Porous Media: Numerical Results for Effective Properties,” Adv. Water Resour., 20, 77–94.

    Article  ADS  Google Scholar 

  • Ramachandran, R.S., Kleinstreuer, C., and Wang, T.-Y., 1989, “Forced Convection Heat Transfer of Interacting Spheres,” Num. Heat Transfer, A15, 471–487.

    Article  ADS  Google Scholar 

  • Roco, M.C., Editor, 1993, Particulate Two-Phase Flows, Butterworth-Heinemann, Boston.

    Google Scholar 

  • Sahraoui, M., and Kaviany, M., 1993, “Slip and No-Slip Temperature Boundary Conditions at Interface of Porous, Plain Media: Convection,” Int. J. Heat Mass Transfer, 36, 1019–1033.

    Article  Google Scholar 

  • Sahraoui, M., and Kaviany, M., 1994, “Direct Simulation Versus Volume-Averaged Treatment of Adiabatic, Premixed Flame in a Porous Medium,” Int. J. Heat Mass Transfer, 37, 2817–2834.

    Article  MATH  Google Scholar 

  • Saito, M., Sadakata, M., Sato, M., Soutome, T., Murata, H., and Ohno, Y., 1992, “Combustion Rates of Pulverized Coal Particles in High-Temperature/ High-Oxygen Concentration Atmosphere,” Combust. Flame, 87, 1–12.

    Article  Google Scholar 

  • Sangiovanni, J.J., and Labowsky, M., 1982, “Burning Times of Linear Fuel Droplet Array: A Comparison of Experiment and Theory,” Combust. Flame, 47, 15–30.

    Article  Google Scholar 

  • Satake, M., and Jenkins, J.T., Editors, 1988, Micromechanics of Granular Materials, Elsevier, Amsterdam.

    MATH  Google Scholar 

  • Sathe, S.B., Peck, R.E., and Tong, T.W., 1990, “A Numerical Analysis of Heat Transfer and Combustion in Porous Radiant Burners,” Int. J. Heat Mass Transfer, 33, 1331–1338.

    Article  Google Scholar 

  • Smoot, L.D., and Pratt, D.T., 1979, Pulverized-Coal Combustion and Gasification, Plenum Press, New York.

    Book  Google Scholar 

  • Smoot, L.D., and Smith, P.J., 1985, Coal Combustion and Gasification, Plenum Press, New York.

    Google Scholar 

  • Soo, S.-L., 1989, Particulates and Continuum, Hemisphere Publishing Corporation, New York.

    MATH  Google Scholar 

  • Szekely, J., Evans, J.W., and Sohn, H.Y., 1976, Gas-Solid Reactions, Academic Press, New York.

    Google Scholar 

  • Takeno, T., and Sato, K., 1979, “An Excess Enthalpy Flame Theory,” Combust. Sci. Technol., 20, 73–84.

    Article  Google Scholar 

  • Tal,(Thau) R., Lee, D.N., and Sirignano, W.A., 1983, “Hydrodynamics and Heat Transfer in Sphere Assemblages-Cylindrical Cell Modes,” Int. J. Heat Mass Transfer, 26, 1265–1273.

    Article  ADS  MATH  Google Scholar 

  • Tal,(Thau) R., Lee, D.N., and Sirignano, W.A., 1984, “Heat and Momentum Transfer Around a Pair of Spheres in Viscous Flow,” Int. J. Heat Mass Transfer, 27, 1953–1962.

    Article  MATH  Google Scholar 

  • Tishkoff, J.M., 1979, “A Model for the Effect of Droplet Interactions on Vaporization,” Int. J. Heat Mass Transfer, 22, 1407–1415.

    Article  ADS  MATH  Google Scholar 

  • Wakao, N., and Kaguei, S., 1982, Heat and Mass Transfer in Packed Beds, Gordon and Breach Science Publishers, New York.

    Google Scholar 

  • Whitaker, S., 1972, “Forced Convection Heat Transfer Correlations for Flow in Pipes, Passed Flat Plates, Single Cylinders, Single Spheres, and for Flow in Packed Beds and Tube Bundles,” AIChE J., 18, 361–371.

    Article  Google Scholar 

  • White, F.M., 1991, Viscous Fluid Flow, Second Edition, McGraw-Hill, New York.

    Google Scholar 

  • Williams, A., Wooley, R., and Lawes, M., 1992, “The Formation of NOx in Surface Burners,” Combust. Flame, 89, 157–166.

    Article  Google Scholar 

  • Woods, L.C., 1993, An Introduction to the Kinetic Theory of Gases and Magne-toplasmas, Oxford University Press, Oxford.

    Google Scholar 

  • Xavier, A.M., and Davidson, J.F., 1985, “Heat Transfer in Fluidized Beds: Con-vective Heat Transfer in Fluid Beds,” in Fluidization, Davidson, J.F., et al., Editors, Second Edition, Academic Press, London.

    Google Scholar 

  • Zanotti, F., and Carbonell, R.G., 1984, “Development of Transport Equations for Multiphase System—III,” Chem. Engng. Sci., 39, 299–311.

    Article  Google Scholar 

  • Zhang, D.-K., 1992, “Laser-Induced Ignition of Pulverized Fuel Particles,” Combust. Flame, 90, 134–142.

    Article  Google Scholar 

  • Zhang, H.Y. and Huang X.Y., 2000, “Volumetric Heat Transfer Coefficients in Solid Fluid Porous Media: Closure Problem, Thermal Analysis and Model Improvement with Fluid Flow,” Int. J. Heat Mass Transfer, 43, 3417–3432.

    Article  MATH  Google Scholar 

  • Zhdanok, S.A., Dobrego, K.V., and Futko, S.I., 2000, “Effect of Porous Media Transparency on Spherical and Cylindrical Filtrational Combustion Heaters Performance,” Int. J. Heat Mass Transfer, 43, 3469–3480.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kaviany, M. (2001). Solid-Fluid Systems with Large Specific Interfacial Area. In: Principles of Convective Heat Transfer. Mechanical Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3488-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3488-1_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2894-8

  • Online ISBN: 978-1-4757-3488-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics