Physical Factors Determining Ultraviolet Radiation Flux into Ecosystems

  • Marguerite A. Xenopoulos
  • David W. Schindler
Chapter

Abstract

The shielding of the Earth from ultraviolet radiation by stratospheric ozone is but one factor in determining the exposure of organisms in the biosphere to harmful levels of UV radiation (UVR, 280–400 nm). Although depletion of stratospheric ozone increases the intensity of UV-B (280–315 nm), many other characteristics of the atmosphere, plant canopy, and water interact to determine the intensity of all wavelengths of UVR that reach biologically sensitive targets. Some of these factors are also changing as the result of human-caused stressors such as climate warming and acid precipitation. All these factors are highly variable in both space and time. We review here some of the most important physical factors in determining the ultimate exposure of a biological target to UV.

Keywords

Photosynthetically Active Radiation Ultraviolet Radiation Dissolve Organic Carbon Concentration Ozone Depletion Solar Zenith Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambach, W., Blumthaler, M., and Wendler, G. 1991. A comparison of ultraviolet radiation measured at an arctic and alpine site. Sol. Energy 47:121–126.Google Scholar
  2. Arts, M.T., Robarts, R.D., Kasai, F., Plante, A.J., Rai, H., and de Lange, H.J. 2000. The attenuation of ultraviolet radiation in high dissolved organic carbon waters of wetlands and lakes on the northern great plains. Limnol. Oceanogr. 45:292–299.Google Scholar
  3. Bais, A.F., Zerefos, C.S., Meleti, C., Ziomas, I., and Tourpali, K. 1993. Spectral measurements of solar UV-B radiation and its relations to total ozone, SO2 and clouds. J. Geophys. Res. 98:5199–5204.Google Scholar
  4. Bais, A.F., Zerefos, C., and McElroy, C.T. 1996. Solar UV-B measurements with the double- and single-monochromator Brewer ozone spectrophotometers. Geophys. Res. Lett. 23:833–836.Google Scholar
  5. Baron, J., McKnight, D., and Denning, A.S. 1991. Sources of dissolved and particulate organic material in Loch Vale Watershed, Rocky Mountain National Park, Colorado, USA. Biogeochemistry 15:89–110.Google Scholar
  6. Beaglehole, D., and Carter, G.G. 1992. Antarctic skies: 2. Characterization of the intensity and polarization of skylight in a high albedo environment. J. Geophys. Res. 97:2597–2600.Google Scholar
  7. Blumthaler, M. 1993. Solar UV measurements. In Environmental Effects of UV (Ultraviolet) Radiation, ed. Blumthaler, M, pp. 17–60. Lewis, Boca Raton, FL.Google Scholar
  8. Blumthaler, M., and Ambach, W. 1988. Human solar ultraviolet radiant exposure in high mountains. Atmos. Environ. 22:749–753.Google Scholar
  9. Blumthaler, M., and Ambach, W. 1990. Indication of increasing solar ultraviolet-B radiation flux in alpine regions. Science 248:206–208.PubMedGoogle Scholar
  10. Blumthaler, M., Webb, A.R., Seckmeyer, G., Bais, A.F., Huber, M., and Mayer, B. 1994. Simultaneous spectroradiometry: a study of solar UV irradiance at two altitudes. Geophys. Res. Lett. 21:2805–2808.Google Scholar
  11. Blumthaler, M., Ambach, W., Cede, A., and Staehelin, J. 1996. Attenuation of erythemal effective irradiance by cloudiness at low and high altitude in the alpine region. Photochem. Photobiol. 63:193–196.Google Scholar
  12. Blumthaler, M., Ambach, W., and Ellinger, R. 1997. Increase in solar UV radiation with altitude. J. Photochem. Photobiol. B Biol. 39:130–134.Google Scholar
  13. Booth, C.R., and Morrow, J.H. 1997. The penetration of UV into natural waters. Photochem. Photobiol. 65:255–267.Google Scholar
  14. Bordewijk, J.A., Slaper, H., Reinin, H.A.J.M., and Schkamann, E. 1995. Total solar radiation and the influence of clouds and aerosols on the biologically effective UV. Geophys. Res. Lett. 22:2151–2154.Google Scholar
  15. Bothwell, M.L., Sherbot, D.M.J., and Pollock, C.M. 1994. Ecosystem response to solar ultraviolet-B radiation: influence of trophic-level interactions. Science 265:97–100.PubMedGoogle Scholar
  16. Bricaud, A., Morel, A., and Prieur, L. 1981. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnol. Oceanogr. 26:43–53.Google Scholar
  17. Brown, M.J., Parker, G.G., and Posner, N.E. 1994. A survey of ultraviolet-B radiation in forests. J. Ecol. 82:843–854.Google Scholar
  18. Brühl, C., and Crutzen, P.J. 1989. On the disproportionate role of tropospheric ozone as a filter against solar UV-B radiation. Geophys. Res. Lett. 16:703–706.Google Scholar
  19. Bukata, R.P., and Jerome, J.H. 1997. A (non linear) perspective on ultraviolet radiation and freshwater ecosystems. In Proceedings, Workshop on Atmospheric Ozone, pp. 137–165. Ontario Climate Advisory Committee, Downsview, Ontario.Google Scholar
  20. Byron, E.R. 1982. The adaptive significance of calanoid copepod pigmentation: a comparative and experimental analysis. Ecology 63:1871–1886.Google Scholar
  21. Caldwell, M.M., Robberecht, R., and Nowak, R.S. 1982. Differential photosynthesis inhibition by ultraviolet-B radiation in species from the arctic-alpine life zone. Arct. Alp. Res. 14:195–202.Google Scholar
  22. Carslaw, K.S., Wirth, M., Tsias, A., Luo, B.P., Dornbrack, A., Leutbecher, M., Volkert, H., Renger, W., Bacmeister, J.T., Reimer, E., and Peter, T. 1998. Increased stratospheric ozone depletion due to mountain-induced atmospheric waves. Nature (Lond.) 391:675–678.Google Scholar
  23. Cox, R.A., and Hayman, G.D. 1988. The stability and photochemistry of dimers of the ClO radical and implications for Antarctic ozone depletion. Nature (Lond.) 332: 796–798.Google Scholar
  24. Crutzen, P.J., and Arnold, F. 1986. Nitric acid cloud formation in the cold Antarctic stratosphere: a major cause for the springtime “ozone hole.” Nature (Lond.) 324:651–655.Google Scholar
  25. Cullen, J.J., Neale, P.J., and Lesser, M.P. 1992. Biological weigthing function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation. Science 258:646–650.PubMedGoogle Scholar
  26. Curtis, P.J. 1998. Climatic and hydrologic control of DOM concentration and quality in lakes. In Aquatic Humic Substances, eds. Curtis, P.J, pp. 93–105. Springer, Berlin.Google Scholar
  27. Curtis, P.J., and Adams, H.E. 1995. Dissolved organic matter quantity and quality from freshwater and saline lakes in east central Alberta (Canada). Biogeochemistry 30:59–76.Google Scholar
  28. Curtis, P.J., and Schindler, D.W. 1997. Hydrologic control of dissolved organic matter in low-Precambrian Shield lakes. Biogeochemistry 36:125–138.Google Scholar
  29. Davies, R. 1993. Increased transmission of ultraviolet radiation to the surface due to stratospheric scattering. J. Geophys. Res. 98:7251–7253.Google Scholar
  30. Davis, R.B., Anderson, D.S., and Berge, F. 1985. Paleolimnological evidence that lake acidification is accompanied by loss of organic matter. Nature (Lond.) 316:436–438.Google Scholar
  31. Day, T.A., Vogelmann, T.C., and DeLucia, E.H. 1992. Are some plant life forms more effective than others in screening out ultraviolet-B radiation? Oecologia (Berl.) 92:513–519.Google Scholar
  32. DeNicola, D.M., Hoagland, K.D., and Roemer, S.C. 1992. Influences of canopy cover on spectral irradiance and periphyton assemblages in a prairie stream. J. North Am. Benthol. Soc. 11:391–404.Google Scholar
  33. Deckmyn, G., and Impens, I. 1998. UV-B and PAR in a grass (Lolium perenne L.) canopy. Plant Ecol. 137:13–19.Google Scholar
  34. Dillon, P.J., and Molot, L.A. 1997. Dissolved organic and inorganic carbon mass balances in central Ontario lakes. Biogeochemistry 36:29–42.Google Scholar
  35. Dirmhirn, I., Sreedharan, C.R., and Venugopal, G. 1993. Spectral ultraviolet radiation and preliminary measurements in mountainous terrain. Theor. Appl. Climatol. 46:219–228.Google Scholar
  36. Donahue, W.F., and Schindler, D.W. 1998. Diel emigration and colonization responses of blackfly larvae (Diptera: Simuliidae) to ultraviolet radiation. Freshw. Biol. 40:357–365.Google Scholar
  37. Donahue, W.F., Schindler, D.W., Page, S.J., and Stainton, M.P. 1998. Acid-induced changes in DOC quality in an experimental whole-lake manipulation. Environ. Sci. Technol. 32:2954–2960.Google Scholar
  38. Edouard, S., Legras, B., Lefevre, F., and Eymard, R. 1996. The effect of small-scale inhomogeneities on ozone depletion in the Arctic. Nature (Lond.) 384:444–447.Google Scholar
  39. Effler, S.W., Schafran, C.G., and Driscoll, C.T. 1985. Partitioning light attenuation in an acidic lake. Can. J. Fish. Aquat. Sci. 42:1707–1711.Google Scholar
  40. Elkins, J.W., Thompson, T.M., Swanson, T.H., Butler, J.H., Hall, B.D., Cummings, S.O., Fisher, D.A., and Raffo, A.G. 1993. Decrease in the growth rates of atmospheric chlorofluorocarbon-11 and chlorofluorocarbon-12. Nature (Lond.) 364:780–783.Google Scholar
  41. Environment Canada. 1997. Canada’s Ozone Layer Protection Program: A Summary. Report En40–442/1997, Ottawa. (See also http://http://www.ec.gc.ca/ozone.)Google Scholar
  42. Estupinan, J.G., Raman, S., Crescenti, G.H., Stricher, J.J., and Barnard, W.F. 1996. Effects of cloud and haze on UV-B radiation. J. Geophys. Res. 101:16807–16816.Google Scholar
  43. Farman, J.C., Gardiner, B.G., and Shanklin, J.D. 1985. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature (Lond.) 315:207–210.Google Scholar
  44. Feister, U. 1994. Measurements of chemically and biologically effective radiation reaching the ground. J. Atmosph. Chem. 19:289–315.Google Scholar
  45. Feister, U., and Grewe, R. 1995. Spectral albedo measurements in the UV and visible region over different types of surfaces. Photochem. Photobiol. 62:736–744.Google Scholar
  46. Frederick, J.E. 1997. The climatology of solar UV radiation at the Earth’s surface. Photochem. Photobiol. 65:253–254.Google Scholar
  47. Frederick, J.E., and Steele, H.D. 1995. The transmission of sunlight through cloudy skies: an analysis based on standard meteorological information. J. Appl. Meteorol. 34:2755–2761.Google Scholar
  48. Frederick, J. E., Zheng, Q., and Booth, R. 1998. Ultraviolet radiation at sites on the Antarctic coast. Photochem. Photobiol. 68:183–190.Google Scholar
  49. Galloway, J.M., Dianwu, Z., Jiling, X., and Likens, G.E. 1987. Acid rain: China, United States, and a remote area. Science 236:1559–1562.PubMedGoogle Scholar
  50. Garcia-Pichel, F., and Castenholz, R.W. 1991. Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J. Phycol. 27:395–409.Google Scholar
  51. Garcia-Pichel, F., and Castenholz, R.W. 1993. Occurrence of UV-absorbing, mycosporinelike compounds among cyanobacteria isolates and an estimate of their screening capacity. Appl. Environ. Microbiol. 59:163–169.PubMedGoogle Scholar
  52. Gautier, C., He, G., Yang, S., and Lubin, D. 1994. Role of clouds and ozone on spectral ultraviolet-B radiation and biologically active UV dose over Antarctica. Antarct. Res. Ser. 62:83–91.Google Scholar
  53. Gieskes, W.C., and Kray, G.W. 1990. Transmission of ultraviolet light in the Weddell Sea. Report on the first measurements made in antarctic. Biomass Newsl. 12:12–14.Google Scholar
  54. Gorham, E. 1996. Lakes under a three-pronged attack. Nature (Lond.) 381:109–110.Google Scholar
  55. Grant, R.H. 1991. Agroclimatology and modeling. Ultraviolet and photosynthetically active bands: plane surface irradiance at corn canopy base. Agron. J. 83:391–396.Google Scholar
  56. Grant, R.H., and Heisler, G.M. 1996. Solar ultraviolet-B and photosynthetically active irradiance in the urban sub-canopy: a survey of influences. Int. J. Biometeorol. 39: 201–212.Google Scholar
  57. Grant, R.H., Jenks, M., Peters, P., and Ashworth, E. 1995. Scattering of ultraviolet and photosynthetically active radiation by Sorghum bicolor canopies: influence of epicuticular wax. Agric. For. Meteorol. 75:263–281.Google Scholar
  58. Hedin, L.O., and Likens, G.E. 1996. Atmospheric dust and acid rain. Sci. Am. 275:88–92.Google Scholar
  59. Hedin, L.O., Granat, L. Likens, G.E., Buishand, T.A., Galloway, J.N., Butler, T.J., and Rodhe, H. 1994. Steep declines in atmospheric base cation. Nature (Lond.) 367: 351–354.Google Scholar
  60. Herman, J.R., Bhartia, P.K., Ziemke, J., Ahmad, Z., and Larko, D. 1996. UV-B increases (1979–1992) from decreases in total ozone. Geophys. Res. Lett. 23:2117–2120.Google Scholar
  61. Herndl, G.J. 1997. Role of ultraviolet radiation on bacterioplankton activity. In The Effects of Ozone Depletion on Aquatic Ecosystems, ed. Herndl, G.J, pp. 143–154. Landes, Austin, TX.Google Scholar
  62. Hessen, D.O. 1993. DNA-damage and pigmentation in alpine and arctic zooplankton as bioindicators of UVRadiation. Verh. Int. Ver. Limnol. 25:482–486.Google Scholar
  63. Hessen, D.O., Gjessing, E.T., Knulst, J., and Fjeld, E. 1997. TOC fluctuations in a humic lake as related to catchment acidification, season and climate. Biogeochemistry 36: 139–151.Google Scholar
  64. Hinton, M.J., Schiff, S.L., and English, M.C. 1997. The significance of storms for the concentration and export of dissolved organic carbon from two Precambrian Shield catchments. Biogeochemistry 36:67–88.Google Scholar
  65. Hofmann, D.J., and Deshler, T. 1991. Evidence from balloon measurements for chemical depletion of stratospheric ozone in the Arctic winter of 1989–90. Nature (Lond.) 349: 300–305.Google Scholar
  66. Hutchinson, G.E. 1957. A Treatise on Limnology, Vol. 1. Geography, Physics, and Chemistry. Wiley, New York.Google Scholar
  67. Ilyas, M. 1987. Effect of cloudiness on solar ultraviolet radiation reaching the surface. Atmos. Env. 21:1483–1484.Google Scholar
  68. IPCC (Intergovernmental Panel on Climate Change). 1995. Climate Change 1994. Report by Working Group 1 and 3. Cambridge University Press, Cambridge.Google Scholar
  69. Jerlov, N.G. 1950. Ultra-violet radiation in the sea. Nature (Lond.) 166:111–112.PubMedGoogle Scholar
  70. Jerlov, N.G. 1968. Optical Oceanography. Elsevier, New York.Google Scholar
  71. Jerome, J.H., and Bukata, R.P. 1998. Tracking the propagation of solar ultraviolet radiation: dispersal of ultraviolet photons in inland waters. J. Great Lakes Res. 24:666–680.Google Scholar
  72. Jones, L.W., and B. Kok. 1966. Photoinhibition of chloroblast reactions. I. Kinetics and action spectra. Plant Physiol. 41:1037–1043.PubMedGoogle Scholar
  73. Kerr, J.B., and McElroy, C.T. 1993. Evidence for large upward trends of ultraviolet-B radiation linked to ozone depletion. Science 262:1032–1034.PubMedGoogle Scholar
  74. Kirk, J.T.O. 1994a. Optics of UV-B radiation in natural waters. Ergeb. Limnol. 43:1–16.Google Scholar
  75. Kirk, J.T.O. 1994b. Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. Cambridge University Press, Cambridge.Google Scholar
  76. Kirk-Davidoff, D.B., Hintsa, E.J., Anderson, J.G., and Keith, D.W. 1999. The effect of climate change on ozone depletion through changes in stratospheric water vapour. Nature (Lond.) 402:399–401.Google Scholar
  77. Krueger, A., Schoeberl, M., Newman, P., and Stolarski, R. 1992. Antarctic ozone hole; TOMS observations. Geophys. Res. Lett. 19:1215–1218.Google Scholar
  78. Kumar, H.D., and Häder, D.-P. 1999. Global Aquatic and Atmospheric Environment. Springer-Verlag, New York.Google Scholar
  79. Larson, R.A., Garrison, W.J., and Carlson, R.W. 1990. Differential responses of alpine and non alpine Aquilegia species to increased ultraviolet-B radiation. Plant Cell Environ. 13:983–989.Google Scholar
  80. Laurion, I., Vincent, W.F., and Lean, D.R.S. 1997. Underwater ultraviolet radiation: development of spectral models for northern high latitude lakes. Photochem. Photobiol. 65:107–114.Google Scholar
  81. Lean, D.R.S. 1998. Attenuation of solar radiation in humic waters. In Aquatic Humic Substances, eds. Lean, D.R.S, pp. 109–124. Springer, Berlin.Google Scholar
  82. Leavitt, P.R., Vinbrooke, R.D., Donald, D.B., Smol, J.P., and Schindler, D.W. 1997. Past ultraviolet radiation environments in lakes derived from fossil pigments. Nature (Lond.) 388:457–459.Google Scholar
  83. Lee, D.W., and Downum, K.R. 1991. The spectral distribution of biologically active solar radiation at Miami, Florida, USA. Int. J. Biometeorol. 35:48–54.PubMedGoogle Scholar
  84. Lindell, M.J., Graneli, H.W., and Bertilsson, S. 2000. Seasonal photoreactivity of dissolved organic matter from lakes with contrasting humic content. Can J. Fish. Aquat. Sci. 57:875–885Google Scholar
  85. Liu, S. C., McKeen, S.A., and Madronich, S. 1991. Effect of anthropogenic aerosols on biologically active ultraviolet radiation. Geophys. Res. Lett. 8:2265–2268.Google Scholar
  86. Lu, Y., and Khalil, M.A.K. 1996. The distribution of solar radiation in the Earth’s atmosphere: the effects of ozone, aerosols and clouds. Chemosphere 32:739–758.Google Scholar
  87. Lubin, D., and Jensen, E.H. 1995. Effects of clouds and stratospheric ozone depletion on ultraviolet radiation trends. Nature (Lond.) 377:710–713.Google Scholar
  88. Ma, J., and Guicherit, R. 1997. Effects of stratospheric ozone depletion and tropospheric pollution on UV-B radiation in the troposphere. Photochem. Photobiol. 66:346–355.Google Scholar
  89. Madronich, S. 1992. Implications of recent atmospheric ozone measurements for biologically active ultraviolet radiation reaching the Earth’s surface. Geophys. Res. Lett. 19:37–40.Google Scholar
  90. Madronich, S. 1993. The atmosphere and UV-B radiation at ground level. In Environmental UV Photobiology, eds. Madronich, S, pp. 1–39. Plenum Press, New York.Google Scholar
  91. Madronich, S., McKenzie, R.L., Björn, L.O., and Caldwell, M.M. 1995. Changes in ultraviolet radiation reaching the Earth’s surface. Ambio 24:143–152.Google Scholar
  92. Madronich, S., McKenzie, R.L., Björn, L.O., and Caldwell, M.M. 1998. Changes in biologically active ultraviolet radiation reaching the Earth’s surface. J. Photochem. Photobiol. B Biol. 46:5–19.Google Scholar
  93. Malcolm, R.L. 1990. The uniqueness of humic substances in each of soil, stream and marine environments. Anal. Chim. Acta 232:19–30.Google Scholar
  94. Manney, G.L., Froidevaux, L., Waters, J.W., Zurek, R.W., Read, W.G., Elson, L.S., Kumer, J.B., Mergenthaler, J.L., Roche, A.E., O’Neill, A., Harwood, R.S., MacKenzie, I., and Swinback, R. 1994. Chemical depletion of ozone in the Arctic lower stratosphere during winter 1992–93. Nature (Lond.) 370:429–434.Google Scholar
  95. McDowell, W.H., and Fisher, S.G. 1976. Autumnal processing of dissolved organic matter in a small woodland stream ecosystem. Ecology 57:561–569.Google Scholar
  96. McElroy, M.B., Salawitch, R.J., Wofsy, S.C., and J.A. Logan. 1986. Antarctic ozone: reductions due to synergistic interactions of chlorine and bromine. Nature (Lond.) 321: 759–761.Google Scholar
  97. McKenzie, R.L., Matthews, W.A., and Johnston, P.V. 1991. The relationship between erythemal UV and ozone derived from spectral irradiance measurements. Geophys. Res. Lett. 18:2269–2272.Google Scholar
  98. McKinley, A.F., and Diffey, B.L. 1987. A reference action spectrum for ultraviolet induced erythema in human skin. CIE Res. Note 6:17–22.Google Scholar
  99. McKnight, D.M., Thurman, M., Wershaw, R., and Hemond, H. 1985. Biogeochemistry of aquatic humic substances in Thoreau’s Bog, Concord, Massachussetts. Ecology 66: 1339–1352.Google Scholar
  100. McKnight, D.M., Aiken, G.R., and Smith, R.L. 1991. Aquatic fulvic acids in microbially based ecosystems: results from two desert lakes in Antarctica. Limnol. Oceanogr. 36:998–1006.Google Scholar
  101. McKnight, D.M., Andrews, E.D., Spaulding, S.A., and Aiken, G.R. 1994. Aquatic fulvic acids in algal-rich antarctic ponds. Limnol. Oceanogr. 39:1972–1979.Google Scholar
  102. McKnight, D.M., Harnish, R., Wershaw, R.L., Baron, J.S., and Schiff, S. 1997. Chemical characteristics of particulate, colloidal, and dissolved organic material in Loch Vale Watershed, Rocky Mountain National Park. Biogeochemistry 36:99–124.Google Scholar
  103. McKnight, D.M., Boyer, E.W., Westerhoff, P.L., Doran, P.T., Kulbe, T., Anderson, D.T. (in press). Spectroflurometric characterization of dissolved organic material for indication of precusor organic material and aromaticity. Limnol and Oceanog. Google Scholar
  104. Michelangeli, D.V., Allen, M., Yung, Y.L., Shia, R-L., Crisp, D., and Eluskiewicz, J. 1992. Enhancement of atmospheric radiation by an aerosol layer. J. Geophys. Res. 97:865–874.PubMedGoogle Scholar
  105. Milot-Roy, V. and Vincent, W.F. 1994. UV radiation effects on photosynthesis: the importance of near-surface thermoclines in a subarctic lake. Ergebn. Limnol. 43:171–184.Google Scholar
  106. Mims, F.M. III, and Frederick, J.E. 1994. Cumulus clouds and UV-B. Nature (Lond.) 371:291.Google Scholar
  107. Molina, M.J., and Rowland, F.S. 1974. Stratospheric sink for chlorofluoromethanes: chlorine atom catalyzed destruction of ozone. Nature (Lond.) 249:810–813.Google Scholar
  108. Molot, L.A., and Dillon, P.J. 1997. Photolytic regulation of dissolved organic carbon in northern lakes. Global Biogeochem. Cycles 11:357–365.Google Scholar
  109. Montecino, V., and Pizarro, G. 1995. Phytoplankton acclimation and spectral penetration of UV irradiance off the central Chilean coast. Mar. Ecol. Prog. Ser. 121:261–269.Google Scholar
  110. Montzka, S.A., Butler, J.H., Myers, R.C., Thompson, T.M., Swanson, T.H., Clarke, A.D., Lock, L.T., and Elkins, J.W. 1996. Decline in the tropospheric abundance of halogen from halocarbons: implications for stratospheric ozone depletion. Science 272:1318–1322.PubMedGoogle Scholar
  111. Morris, D.P., Zagarese, H., Williamson, C.E., Balseiro, E.G., Hargreaves, B.R., Modenutti, B., Moeller, R., and Queimalinos, C. 1995. The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol. Oceanogr. 40:1381–1391.Google Scholar
  112. Müller, R., Crutzen, P.J., Grooß, J.-U., Brühl, C., Russell J.M. III, Gernandt, H., McKenna, D.S., and Tuck, A.F. 1997. Severe chemical ozone loss in the Arctic during the winter of 1995–96. Nature (Lond.) 389:709–712.Google Scholar
  113. Niu, X., Frederick, J.E., Stein M.L., and Tiao, G.C. 1992. Trends in column ozone based on TOMS data: dependence on month, latitude and longitude. J. Geophys. Res. 97:14661–14669.Google Scholar
  114. Papayannis, A., Balis, D., Bais, A., Van der Bergh, H., Calpini, B., Durieux, E., Fiorani, L., Jaquet, L., Ziomas, I., and Zerefos, C.S. 1998. Role of urban and suburban aerosols on solar UV radiation over Athens, Greece. Atmos. Environ. 32:2193–2201.Google Scholar
  115. Parisi, A.V., and Wong, C.F. 1994. A dosimetric technique for the measurement of ultraviolet radiation exposure to plants. Photochem. Photobiol. 60:470–474.Google Scholar
  116. Parisi, A.V., and Wong, J.C.F. 1996. Plant canopy shape and the influences on UV exposures to the canopy. Photochem. Photobiol. 64:143–148.Google Scholar
  117. Parisi, A.V., Wong, J.C.F., and Galea, V. 1996. A method for evaluation of UV and biologically effective exposures to plants. Photochem. Photobiol. 64:326–333.Google Scholar
  118. Parisi, A.V., Wong, J.C.F., and Randall, C. 1998. Simultaneous assessment of photosynthetically active and ultraviolet solar radiation. Agric. For. Meteorol. 92:97–103.Google Scholar
  119. Piazena, H., and Häder, D.-P. 1994. Penetration of solar UV irradiation in coastal lagoons of the southern Baltic Sea and its effect on phytoplankton communities. Photochem. Photobiol. 60:463–469.Google Scholar
  120. Piazena, H., and Häder, D.-P. 1997. Penetration of solar UV and PAR into different waters of the Baltic Sea and remote sensing of phytoplankton. In The Effects of Ozone Depletion on Aquatic Ecosystems, ed. D.-P. Häder. Landes, Austin, TX. pp. 45–96.Google Scholar
  121. Rasmussen, J.B., Godbout, L., and Schallenberg, M. 1989. The humic content of lake water and its relationship to watershed and lake morphometry. Limnol. Oceanogr. 34:1336–1343.Google Scholar
  122. Rau, W., and Hofmann, H. 1996. Sensitivity to UV-B of plants growing in different altitudes in the Alps. J. Plant Physiol. 148:21–25.Google Scholar
  123. Repapis, C.C., Mantis, H.T., Paliatsos, A.G., Philandras, C.M., Bais, A.F., and Meleti, C. 1998. Case study of UV-B modification during episodes of urban air pollution. Atmos. Environ. 32:2203–2208.Google Scholar
  124. Rex, M., Harris, N.R.P., Von der Eathen, P., Lehmah, R., Braather, G.O., Reimer, E., Beck, A., Chipperfield, M.P., Altier, R., Allaart, M., O’Connor, F., Dier, H., Dorokhov, V., Fast, H., Gil, M., Kyro, E., Litynska, Z., Mikkelsen, I.S., Molynenx, M.E., Nakane, H., Notholt, J., Rummakainan, M., Viatte, P., Wenger, J. 1997. Prolonged stratospheric ozone loss in the 1995–96 Arctic winters. Nature (Lond.) 389:835–838.Google Scholar
  125. Roy, C.R., Gies, H.P., Tomlinson, D.W., and Lugg, D.L. 1994. Effects of ozone depletion on the ultraviolet radiation environment at the Australian stations in Antarctica. Antarct. Res. Ser. 62:1–15.Google Scholar
  126. Sabziparvar, A.A., Shine, K.P., and Forster, P.M. 1999. A model-derived global climatology of UV irradiation at the Earth’s surface. Photochem. Photobiol. 69:193–202.Google Scholar
  127. Schafer, J.S., Saxena, V.K., Wenny, B.N., Barnard, W., and De Luisi, J.J. 1996. Observed influence of clouds on ultraviolet-B radiation. Geophys. Res. Lett. 23:2625–2628.Google Scholar
  128. Schindler, D.W. 1971. Light, temperature and oxygen regimes of selected lakes in the Experimental Lakes Area, northwestern Ontario. J. Fish. Res. Board Can. 28:157–169.Google Scholar
  129. Schindler, D.W. 1997. Widespread effects of climatic warming on freshwater ecosystems in North America. Hydrol. Process. 11:1043–1067.Google Scholar
  130. Schindler, D.W. 1998. A dim future for boreal waters and landscapes. BioScience 48: 157–164.Google Scholar
  131. Schindler, D.W., and Curtis, P.J. 1997. The role of DOC in protecting freshwaters subjected to climtic warming and acidification from UV exposure. Biogeochemistry 36:1–8.Google Scholar
  132. Schindler, D.W., and Nighswander, J.E. 1970. Nutrient supply and primary production in Clear Lake, Eastern Ontario. J. Fish. Res. Board Can. 27:2009–2036.Google Scholar
  133. Schindler, D.W., Bayley, S.E., Parker, B.R., Beaty, K.B., Cruikshank, D.R., Fee, E.J, Schindler, E.U., and Stainton, M.P. 1996a. The effects of climatic warming on the properties of boreal lakes and streams at the Experimental Lakes Area, northwestern Ontario. Limnol. Oceanogr. 41:1004–1017.Google Scholar
  134. Schindler, D.W., Curtis, P.J., Parker, B.R., and Stainton, M.P. 1996b. Consequences of climate warming and lake acidification for UV-B penetration in North American boreal lakes. Nature (Lond.) 379:705–708.Google Scholar
  135. Schindler, D.W., Curtis, P.J., Bayley, S.E., Parker, B.R., Beaty, K.G., and Stainton, M.P. 1997. DOC-mediated effects of climate change and acidification on boreal lakes. Biogeochemistry 36:9–28.Google Scholar
  136. Scotto, J., Cotton, G., Urbach, F., Berger, D., and Fears, T. 1988. Biologically effective ultraviolet radiation: surface measurements in the United States, 1974 to 1985. Science 239:762–764.PubMedGoogle Scholar
  137. Scully, N.M., and Lean, D.R.S. 1994. The attenuation of UV radiation in temperate lakes. Arch. Hydrobiol. 43:135–144.Google Scholar
  138. Setlow, R.B. 1974. The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis. Proc. Natl. Acad. Sci. U.S.A. 71:3363–3366.PubMedGoogle Scholar
  139. Shindell, D.T., Rind, D., and Lonergan, P. 1998. Increased polar stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations. Nature (Lond.) 392:589–592.Google Scholar
  140. Shoeberl, M.R., Stolarski, R.S., and Krueger, A.J. 1989. The 1988 Antarctic ozone depletion: comparison with previous year depletions. Geophys. Res. Lett. 16:377–380.Google Scholar
  141. Smith, R.C., and Baker, K.S. 1981. Optical properties of the clearest natural waters (200–800 nm). Appl. Opt. 20:177–184.PubMedGoogle Scholar
  142. Smith, R.C., Prezelin, B.B, Baker, K.S., Bidigare, R.R., Boucher, N.P., Coley, T., Karentz, D., Maclntyre, S., Matlick, H.A., Menzies, D., Ondrusek, M., Wan, Z., and Waters, K.J. 1992. Ozone depletion: ultraviolet radiation and phytoplankton biology in natural waters. Science 255:252–259.Google Scholar
  143. Smith, R.E.H., Furgal, J.A., Charlton, M.N., Greenberg, B.M., Hiriart, V., and Marwood, C. 1999. Attenuation of UVR in a large lake with low dissolved organic matter concentration. Can. J. Fish. Aquat. Sci. 56:1351–1361.Google Scholar
  144. Somersalo, S., Mäkelä, P., Rajala, A., Nevo, E., and Peltonen-Sainio, P. 1998. Morphophysiological traits characterizing environmental adaptation of Avena barbata. Euphytica 99:213–220.Google Scholar
  145. Stolarski, R.S., Bloomfield, P., and McPeters, R.D. 1991. Total ozone trends deduced from Nimbus 7 TOMS data. J. Geophys. Res. Lett. 18:1015–1018.Google Scholar
  146. Stolarski, R., Bojkov, R., Bishop, L., Zerefos, C., Staehelin, J., and Zawodny, J. 1992. Measured trends in stratospheric ozone. Science 256:342–349.PubMedGoogle Scholar
  147. Stramski, D., Booth, C.R., and Mitchell, B.G. 1992. Estimation of downward irradiance attenuation from a single moored instrument. Deep-Sea Res. 39:567–584.Google Scholar
  148. Sullivan, J.H., Teramura, A.H., and Ziska, L.H. 1992. Variation in UV-B sensitivity in plants from a 3000-m elevational gradient in Hawaii. Am. J. Bot. 79:737–743.Google Scholar
  149. Trodahl, H.J., and Buckley, R.G. 1990. Enhanced ultraviolet transmission of Antarctic sea ice during the austral spring. Geophys. Res. Lett. 17:2177–2179.Google Scholar
  150. Tsay, S-C., and K. Stamnes. 1992. Ultraviolet radiation in the Arctic: the impact of potential ozone depletions and cloud effects. Geophys. Res. Lett. 97:7824–7840.Google Scholar
  151. Tsitas, S.R., and Yung, Y.L. 1996. The effect of volcanic aerosols on ultraviolet radiation in Antarctica. Geophys. Res. Lett. 23:157–160.Google Scholar
  152. UNEP. 1989. Environmental Effects Panel Report. United Nations Environmental Programme, Nairobi, Kenya.Google Scholar
  153. Urbach, F. 1997. Ultraviolet radiation and skin cancer of humans. J. Photochem. Photobiol. B Biol. 40:3–7.Google Scholar
  154. Urban, N.R., Bayley, S.E., and Eisenreich, S.J. 1989. Export of dissolved organic carbon and acidity from peatlands. Water Resour. Res. 25:1619–1628.Google Scholar
  155. Van de Staaij, J.W.M., Huijsmans, R., Ernst, W.H.O., and Rozema, J.. 1995. The effect of elevated UV-B (280–320 nm) radiation levels on Silene vulgaris: a comparison between a highland and lowland population. Environ. Pollut. 90:357–362.PubMedGoogle Scholar
  156. Varotsos, C., Chronopoulos, G.J., Katsikis, S., and Sakelariou, N.K. 1995. Further evidence of the role of air pollution on solar ultraviolet radiation reaching the ground. Int. J. Remote Sens. 16:1883–1886.Google Scholar
  157. Vincent, W.F., Rae, R., Laurion, I., Hoiward-Williams, C., and Priscu, J.C. 1998. Transparency of Antarctic ice-covered lakes to solar UV radiation. Limnol. Oceanogr. 43: 618–624.Google Scholar
  158. Vinebrooke, R.D., and Leavitt, P.R. 1999. Differential responses of littoral communities to ultraviolet radiation in an alpine lake. Ecology 80:223–237.Google Scholar
  159. Vitousek, P.M., Aber, J.D., Howarth, R.W., Likens, G.E., Matson, P.A., Schindler, D.W., Schlesinger, W.H., and Tilman, D.G. 1997a. Human alteration of the global nitrogen cycle: sources and consequences. Ecol. Appl. 7:737–750.Google Scholar
  160. Vitousek, P.M., Mooney, H.A., Lubchenco, J., and Melillo, J.M. 1997b. Human domination of Earth’s ecosystems. Science 277:494–499.Google Scholar
  161. Vogelmann, A.M., Ackerman, T.P., and Turco, R.P. 1992. Enhancements in biologically effective ultraviolet radiation following volcanic eruptions. Nature (Lond.) 359:47–49.PubMedGoogle Scholar
  162. Wetzel, R.G., Hatcher, P.G., and Bianchi, T.S. 1995. Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism. Limnol. Oceanogr. 40:1369–1380.Google Scholar
  163. Williamson, C.E., Stemberger, R.S., Morris, D.P., Frost, T.M., and Paulsen, S.G. 1996. Ultraviolet radiation in North American lakes: attenuation estimates from DOC measurements. Limnol. Oceanogr. 41:1024–1034.Google Scholar
  164. WMO (World Meteorological Organization). 1995. Atmospheric Ozone 1996. WMO Global Ozone Research and Monitoring Project, Report 16. NASA, Washington, DC.Google Scholar
  165. WMO (World Meteorological Organization). 1992. Scientific Assessment of Ozone Depletion: 1991. Global Ozone Reasearch and Monitoring Project, Report 25. Geneva, Switzerland.Google Scholar
  166. WMO (World Meteorological Organization). 1995. Scientific Assessment of Ozone Depletion: 1994. Global Ozone Reasearch and Monitoring Project, Report 37. Geneva, Switzerland.Google Scholar
  167. WMO (World Meteorological Organization). 1999. Scientific Assessment of Ozone Depletion: 1999. Global Ozone Research and Monitoring Project—report 66. Geneva, Switzerland.Google Scholar
  168. Xenopoulos, M.A., Prairie, Y.T., and Bird, D.F. 2000. The influence of UVB, stratospheric ozone variability and thermal stratification on the phytoplankton biomass dynamics in a mesohumic lake. Can. J. Fish. Aquat. Sci. 57:600–609.Google Scholar
  169. Yan, N.D., Keller, W., Scully, N.M., Lean, D.R.S., and Dillon, P.J. 1996. Increased UV-B penetration in a lake owing to drought-induced acidification. Nature (Lond.) 381: 141–143.Google Scholar
  170. Yang, X., Miller, D.R., and Montgomery, M.E. 1993. Vertical distribution of canopy foliage and biologically active radiation in a defoliated/refoliated hardwood forest. Agric. For. Meteorol. 67:129–146.Google Scholar
  171. Zerefos, C.S., Mantis, H.T., Bais, A.F., Ziomas, C., and Zoumakis, N. 1986. Solar ultraviolet absorption by sulphur dioxide in Thessaloniki, Greece. Atmos. Ocean 24:292–300.Google Scholar
  172. Zerefos, C.S., Bais, A., Meleti, C., and Ziomas, I. 1995. A note on the recent increase of solar UV-B radiation over northern middle latitudes. J. Geophys. Res. 22:1245–1247.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Marguerite A. Xenopoulos
  • David W. Schindler

There are no affiliations available

Personalised recommendations