Skip to main content

Abstract

Ultraviolet radiation has been a ubiquitous physical stressor since the origin of the first microbial ecosystems during the Archean era (3.9–2.5 Ga [billion years] ago). Although the UV radiation that reaches the surface of the Earth spatially and temporally depends on many factors (Xenopoulos and Schindler, Chapter 2, this volume), during the history of life on Earth four distinct periods of photobiological history can be recognized (Cockell and Knowland 1999). First, the period during which UV radiation influenced chemistry on prebiotic Earth during the Hadean era (>3.9 Ga ago) dominated by the involvement of UV radiation in organic complexification as well as the deleterious effects it may have had on exposed prebiotic molecules. Because this does not involve ecosystems or biological organisms per se, it is not discussed in detail here, although discussions on the role of UV radiation on prebiotic Earth can be found elsewhere (Sagan 1973; Kolb, Dworkin and Miller 1994; Cleaves and Miller 1998; Bernstein et al. 1999; Cockell and Knowland 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adhikary, S.P., and Sahu, J.K. 1998. UV protecting pigment of the terrestrial cyanobacterium Tolypothrix byssoidea. J. Plant Physiol. 153:770–773.

    Article  CAS  Google Scholar 

  • Aiken, A.C., Chandra, S., and Stecher, T.P. 1980. Supernovae effects on the terrestrial atmosphere. Planet. Space Sci. 28:639–644.

    Article  Google Scholar 

  • Andersson, D.I., and Hughes, D. 1996. Muller’s ratchet decreases fitness of a DNA-based microbe. Proc. Natl. Acad. Sci. U.S.A. 93:906–907.

    Article  PubMed  CAS  Google Scholar 

  • Angell, J.K., and Korshover, J. 1973. Quasi-biennial and long-term fluctuations in total ozone. Mon. Weather Rev. 101:426–443.

    Article  Google Scholar 

  • Berkner, L.V., and Marshall, L.C. 1965. History of major atmospheric components. Proc. Natl. Acad. Sci. U.S.A. 53:1215–1225.

    Article  CAS  Google Scholar 

  • Bernstein, M.P., Sandford, S.A., Allamandola, L.J., Gillette, J.S., Clement, S.J., and Zare, R.N. 1999. UV irradiation of polycyclic aromatic hydrocarbons in ices: production of alcohols, quinones and ethers. Science 283:1135–1138.

    Article  PubMed  CAS  Google Scholar 

  • Binder, B.J., Chisholm, S.W., Olson, R.J., Frankel, S.L., and Worden, A.Z. 1996. Dynamics of picophytoplankton, ultraphytoplankton and bacteria in the central equatorial Pacific. Deep-Sea Res. Part II Top. Stud. Oceanogr. 43:907–931.

    Article  Google Scholar 

  • Birks, J.W. 1986. Nuclear winter—ultraviolet spring. Abstr. Pap. Am. Chem. Soc. 17: CHED 192.

    Google Scholar 

  • Blankenship, R.E. 1992. Origin and early evolution of photosynthesis. Photosynth. Res. 33:91–111.

    Article  PubMed  CAS  Google Scholar 

  • Bothwell, M.L., Sherbot, D.M.J., and Pollock, C.M. 1994. Ecosystem response to solar ultraviolet-B radiation: influence of trophic-level interactions. Science 265:97–100.

    Article  PubMed  CAS  Google Scholar 

  • Brocks, J.J., Logan, G.A., Buick, R., and Summons, R.E. 1999. Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036.

    Article  PubMed  CAS  Google Scholar 

  • Canuto, V.M., Levine, J.S., Augustsson, T.R., and Imhoff, C.L. 1982. UV radiation from the young sun and oxygen and ozone levels in the prebiological paleoatmosphere. Nature (Lond.) 296:816–820.

    Article  CAS  Google Scholar 

  • Canuto, V.M., Levine, J.S., Augustsson, T.R., Imhoff, C.L., and Giampapa, M.S. 1983. The young sun and the atmosphere and photochemistry of the early Earth. Nature (Lond.) 305:281–286.

    Article  CAS  Google Scholar 

  • Castenholz, R.W., Bauld, J., and Jorgenson, B.B. 1990. Anoxygenic microbial mats of hot springs: thermophilic Chlorobium sp. FEMS Microbiol. 74:325–336.

    Article  CAS  Google Scholar 

  • Chamberlain, W.M., and Marland, G. 1977. Precambrian evolution in a stratified global sea. Nature (Lond.) 265:135–136.

    Article  Google Scholar 

  • Chapman, C.R., and Morrison, D. 1994. Impacts on the Earth by asteroids and comets: assessing the hazard. Nature (Lond.) 367:33–39.

    Article  Google Scholar 

  • Chyba, C.F., Thomas, P., and Zanhle, K. 1993. The 1908 Tunguska event: atmospheric disruption of a stony asteroid. Nature (Lond.) 361:40–44.

    Article  Google Scholar 

  • Cleaves, H.J., and Miller, S.L. 1998. Oceanic protection of prebiotic organic compounds from UV radiation. Proc. Natl. Acad. Sci. U.S.A. 95:7260–7263.

    Article  PubMed  CAS  Google Scholar 

  • Cockell, C.S. 1998. The biological effects of high ultraviolet radiation on early Earth: a theoretical evaluation. J. Theor. Biol. 193:717–729.

    Article  PubMed  CAS  Google Scholar 

  • Cockell, C.S. 1999a. Carbon biochemistry and the ultraviolet radiation environments of F, G and K main sequence stars. Icarus 141:399–407.

    Article  CAS  Google Scholar 

  • Cockell, C.S. 1999b. Crises and extinction in the fossil record-a role for ultraviolet radiation? Paleobiology 25:212–225.

    Google Scholar 

  • Cockell, C.S. 2000a. The ultraviolet history of the terrestrial planets-implications for biological evolution. Planet. Space Sci. 48:203–214.

    Article  CAS  Google Scholar 

  • Cockell, C.S. 2000b. Ultraviolet radiation and the photobiology of Earth’s early oceans. Origins Life Evol. Biosph. 30:487–500.

    Google Scholar 

  • Cockell, C.S., and Blaustein, A.R. 2000. ‘Ultraviolet spring’ and the ecological consequences of catastrophic impacts. Ecol. Lett. 3:77–81.

    Article  Google Scholar 

  • Cockell, C.S., and Knowland, J. 1999. Ultraviolet screening compounds. Biol. Rev. (Camb.) 74:311–345.

    Article  PubMed  CAS  Google Scholar 

  • Cockell, C.S., and Rothschild, L.J. 1999. The effects of ultraviolet radiation on diurnal photosynthetic patterns in three taxonomically and ecologically diverse microbial mats. Photochem. Photobiol. 69:203–210.

    Article  PubMed  CAS  Google Scholar 

  • Collerson, K.D., and Kamber, B.S. 1999. Evolution of the continents and the atmosphere inferred from Th-U-Nb systematics of the depleted mantle. Science 283:1519–1522.

    Article  PubMed  CAS  Google Scholar 

  • Covey, C., Thompson, S.L., Weissman, P.R. and MacCracken, M.C. 1994. Global climatic effects of atmospheric dust from an asteroid or comet impact on Earth. Global Planet. Change 9:263–273.

    Article  Google Scholar 

  • Crutzen, P.J., and Bruhl, C. 1996. Mass extinctions and supernova explosions. Proc. Natl. Acad. Sci. U.S.A. 93:1582–1584.

    Article  PubMed  CAS  Google Scholar 

  • Cullen, J.J., Neale, P.J., and Lesser, M.P. 1992. Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation. Science 258:646–650.

    Article  PubMed  CAS  Google Scholar 

  • DesMarais, D.J., Strauss, H., Summons, R.E., and Hayes, J.M. 1992. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature (Lond.) 359: 605–608.

    Article  CAS  Google Scholar 

  • Dillon, J.G., and Castenholz, R.W. 1999. Scytonemin: a cyanobacterial sheath pigment, scytonemin, protects against UV-C radiation: implications for early photosynthetic life. J. Phycol. 35:673–681.

    Article  CAS  Google Scholar 

  • DiRuggiero, J., Brown, J.R., Bogert, A.P., and Robb, F.T. 1999. DNA repair systems in Archaea: mementos from the last universal common ancestor. J. Mol. Evol. 49:474–484.

    Article  PubMed  CAS  Google Scholar 

  • Drake, J.W. 1991. A constant rate of spontaneous mutation in DNA-based microbes. Proc. Natl. Acad. Sci. U.S.A. 88:7160–7164.

    Article  PubMed  CAS  Google Scholar 

  • Elena, S.F., and Lenski, R.E. 1997. Test of synergistic interactions among deleterious mutations in bacteria. Nature (Lond.) 390:395–398.

    Article  PubMed  CAS  Google Scholar 

  • Elena, S.F., Ekunwe, L., Hajela, N., Oden, S.A., and Lenski, R.E. 1998. Distribution of fitness effects caused by random insertion mutations in Escherichia coli. Genetica (Dordr.) 102–103:349–358.

    Google Scholar 

  • Ellis, J., and Schramm, D.N. 1995. Could a nearby supernova explosion have caused a mass extinction? Proc. Natl. Acad. Sci. U.S.A. 92:235–238.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, J., Fields, B.D., and Schramm, D.N. 1996. Geological isotope anomalies as signatures of nearby supernovae. Astrophys. J. 470:1227–1236.

    Article  CAS  Google Scholar 

  • Fox, F.M., and Caldwell, M.M. 1978. Competitive interaction in plant populations exposed to supplementary ultraviolet-B radiation. Oecologia (Berl.) 36:173–190.

    Article  Google Scholar 

  • Francois, L.M., and Gerard, J-C. 1988. Ozone, climate and biospheric environment in the ancient oxygen-poor atmosphere. Planet. Space Sci. 36:1391–1414.

    Article  CAS  Google Scholar 

  • Garcia-Pichel, F. 1998. Solar ultraviolet and the evolutionary history of cyanobacteria. Origins Life Evol. Biosph. 28:321–347.

    Article  CAS  Google Scholar 

  • Garcia-Pichel, F., and Bebout, B.M. 1996. Penetration of ultraviolet radiation into shallow water sediments: high exposure for photosynthetic communities. Mar. Ecol. Prog. Ser. 131:257–262.

    Article  Google Scholar 

  • Garcia-Pichel, F., and Belnap, J. 1996. Micro-environments and micro-scale productivity of cyanobacterial desert crusts. J. Phycol. 32:774–782.

    Article  Google Scholar 

  • Garcia-Pichel, F., and Castenholz, R.W. 1993. Occurrence of UV-absorbing, mycosporinelike compounds among cyanobacterial isolates and an estimate of their screening capacity. Appl. Environ. Microbiol. 59:163–169.

    PubMed  CAS  Google Scholar 

  • Garcia-Pichel, F., Sherry, N.D., and Castenholz, R.W. 1992. Evidence for an ultraviolet sunscreen role of the extracellular pigment scytonemin in the terrestrial cyanobacterium Chlorogloeopsis sp. Photochem. Photobiol. 59:17–23.

    Article  Google Scholar 

  • Gascon, J., Oubina, A., Perez-Lezaun, A., and Urmeneta, J. 1995. Sensitivity of selected bacterial species to UV radiation. Curr. Microbiol. 30:177–182.

    Article  PubMed  CAS  Google Scholar 

  • Gough, D.O. 1981. Solar interior structure and luminosity variations. Sol. Phys. 74:21–34.

    Article  CAS  Google Scholar 

  • Green, A.E.S., and Miller, J.H. 1975. Measures of biologically effective radiation in the 280–340 nm region. CIAP Monogr. 5(2):60–70.

    Google Scholar 

  • Haberle, R.M., McKay, C.P., Pollack, J.B., Gwynne, O.E., Atkinson, D.H., Appelbaum, J., Landis, G.A., Zurek, R.W., and D.J. Flood. 1993. Atmospheric effects on the utility of solar power on Mars. In Resources of Near-Earth Space, eds. Haberle, R.M., McKay, C.P., Pollack, J.B., Gwynne, O.E., Atkinson, D.H., Appelbaum, J., Landis, G.A., Zurek, R.W., and D.J. Flood, pp. 845–885. University of Arizona Press, Tucson.

    Google Scholar 

  • Hallam, A., and Wignall, P.B. 1997. Mass Extinctions and Their Aftermath. Oxford University Press, Oxford.

    Google Scholar 

  • Heath, D.F., Krueger, A.J., and Crutzen, P.J. 1977. Solar proton event: influence on stratospheric ozone. Science 197:886–889.

    Article  PubMed  CAS  Google Scholar 

  • Holland, H.D. 1984. The Chemical Evolution of the Atmosphere and Oceans. Princeton University Press, Princeton.

    Google Scholar 

  • Holland, H.D. 1994. Early Proterozoic atmospheric change. In Early Life on Earth, ed. Holland, H.D, pp. 237–244. Columbia University Press, New York.

    Google Scholar 

  • Holland, H.D., and Beukes, N.J. 1990. A paleoweathering profile from Griqualand West, South Africa: evidence for a dramatic rise in atmospheric oxygen between 2.2 and 1.9 b.y.b.p. Am. J. Sci. 290:1–34.

    Article  PubMed  Google Scholar 

  • Hunter, J.R., Taylor, J.H., and Moser, N.F. 1979. Effect of ultraviolet irradiation on eggs and larvae of the Northern anchovy. Engraulis mordax and the Pacific mackerel, Scomber japonicus during the embryonic stage. Photochem. Photobiol. 29:325–378.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, D.A. 1980. Volcanic contribution of chlorine to the stratosphere: more significant to ozone than previously estimated? Science 209:491–493.

    Article  PubMed  CAS  Google Scholar 

  • Jones, L.W., and Kok, B. 1966. Photoinhibition of chloroplast reactions. I. Kinetics and action spectra. Plant Physiol. 41:1037–1043.

    Article  PubMed  CAS  Google Scholar 

  • Joseph, J.H., Wiscombe, W.J., and Weinman, J.A. 1976. The delta-Eddington approximation for radiative transfer flux. J. Atmos. Sci. 28:833–837.

    Google Scholar 

  • Karentz, D., McEuan, F.S., Land, M.C., and Dunlap, W.C. 1991. Survey of mycosporinelike amino acids in Antarctic marine organisms: potential protection from ultraviolet exposure. Mar. Biol. 108:157–166.

    Article  CAS  Google Scholar 

  • Kasting, J.F. 1987. Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. Precambrian Res. 34:205–229.

    Article  PubMed  CAS  Google Scholar 

  • Kasting, J.F., and Donahue, T.M. 1980. The evolution of atmospheric ozone. J. Geophys. Res. 85:3255–3263.

    Article  CAS  Google Scholar 

  • Kasting, J.F., Zahnle, K.J., Pinto, J.P., and Young, A.T. 1989. Sulfur, ultraviolet radiation, and the early evolution of life. Origins Life Evol. Biosph. 19:95–108.

    Article  CAS  Google Scholar 

  • Kirk, J.T.O. 1994. Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Knoll, A.H. 1979. Archean photoautotrophy: some alternatives and limits. Origins Life Evol. Biosph. 9:313–327.

    Article  CAS  Google Scholar 

  • Kolb, V.M., Dworkin, J.P., and Miller, S.L. 1994. Alternative bases in the RNA world: the prebiotic synthesis of urazole and its ribosides. J. Mol. Evol. 38:549–557.

    Article  PubMed  CAS  Google Scholar 

  • Kopylov, V.M., Bonch-Osmolovskaya, E.A., Svetlichnyi, V.A., Miroshnichenko, M.L., and Skobkin, V.S. 1993. y-Irradiation resistance and UV-sensitivity of extremely thermophilic archaebacteria and eubacteria. Mikrobiologiya 62:90–95.

    Google Scholar 

  • Kuroda, P.K. 1977. Possible climatic effect of supernova explosions. Geochem. J. 11:45–48.

    Article  CAS  Google Scholar 

  • Laskar, J., Joutel, F., and Robutel, P. 1993. Stabilization of the Earth’s obliquity by the moon. Nature (Lond.) 361:615–617.

    Article  Google Scholar 

  • Lean, J. 1997. The Sun’s variable radiation and its relevance for Earth. Annu. Rev. Astron. Astrophys. 35:33–67.

    Article  CAS  Google Scholar 

  • Leavitt, P.R., Vinebrook, R.D., Donald, D.B., Smol, J.P., and Schindler, D.W. 1997. Past ultraviolet radiation environments in lakes derived from fossil pigments. Nature (Lond.) 388:457–459.

    Article  CAS  Google Scholar 

  • Lesk, A.M. 1973. On the hypothesized selective pressure by UV on base pair composition. J. Theor. Biol. 40:201–202.

    Article  PubMed  CAS  Google Scholar 

  • Levine, J.S., Boughner, R.E., and Smith, K.A. 1980. Ozone, ultraviolet flux and temperature of the paleoatmosphere. Origins Life Evol. Biosph. 10:199–213.

    Article  CAS  Google Scholar 

  • Lowe, D.R. 1994. Early environments: constraints and opportunities for early evolution. In Early Life on Earth, ed. Lowe, D.R, pp. 24–35. Columbia University Press, New York.

    Google Scholar 

  • Lowry, B., Lee, D., and Hebant, C. 1980. The origin of land plants: a new look at an old problem. Taxon 29:183–197.

    Article  Google Scholar 

  • Margulis, L., Walker, J.C.G., and Rambler, M. 1976. Reassessment of the roles of oxygen and ultraviolet light in Precambrian evolution. Nature (Lond.) 264:620–624.

    Article  CAS  Google Scholar 

  • Mattimore, V., and Battista, J.R. 1996. Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J. Bacteriol. 178:633–637.

    PubMed  CAS  Google Scholar 

  • Michod, R.E., and Long, A. 1995. Origin of sex for error repair. 2. Rarity and extreme environments. Theor. Popul. Biol. 47:56–81.

    Article  PubMed  CAS  Google Scholar 

  • Mojzsis, S.J., Arrhenius, G., McCleesan, K.D., Harrison, T.M., Nutman, A.P., and Friend, C.R.L. 1996. Evidence for life on Earth before 3.8 billion years ago. Nature (Lond.) 384:55–59.

    Article  PubMed  CAS  Google Scholar 

  • Mulkidjanian, A.Y., and Junge, W. 1997. On the origin of photosynthesis as inferred from sequence analysis. Photosynth. Res. 51:27–42.

    Article  CAS  Google Scholar 

  • Nelson, D.M., and Brzezinski, M.A. 1997. Diatom growth and productivity in an oligotrophic midocean gyre: a 3-yr record from the Sargasso Sea near Bermuda. Limnol. Oceanogr. 42:473–486.

    Article  CAS  Google Scholar 

  • Newman, M.J., and Rood, R.T. 1977. Implications of solar evolution for the Earth’s early atmosphere. Science 198:1035–1037.

    Article  PubMed  CAS  Google Scholar 

  • Nienow, J.A., McKay, C.P., and Friedmann, E.I. 1988. The cryptoendolithic microbial environment in the Ross Desert of Antarctica: light in the photosynthetically active region. Microb. Ecol. 16:271–289.

    Article  PubMed  CAS  Google Scholar 

  • Olson, J.M., and Pierson, B.K. 1986. Photosynthesis 3.5 thousand million years ago. Photosynth. Res. 9:251–259.

    Article  CAS  Google Scholar 

  • Oren, A. 1997. Mycosporine-like amino acids as osmotic solutes in a community of halophilic cyanobacteria. Geomicrobiol. J. 14:231–240.

    Article  CAS  Google Scholar 

  • Pawlowski, J., Bolivar, I., Fahrni, J.F., de Vargas, C., Gouy, M., and Zaninetti, L. 1997. Extreme differences in rates of molecular evolution of Foraminifera revealed by comparison of ribosomal DNA sequences and the fossil record. Mol. Biol. Evol. 14:498–505.

    Article  PubMed  CAS  Google Scholar 

  • Pierson, B.K., Mitchell, H.K., and Ruff-Roberts, A.L. 1993. Chloroflexus aurantiacus and ultraviolet radiation: implications for Archean shallow-water stromatolites. Origins Life Evol. Biosph. 23:243–260.

    Article  Google Scholar 

  • Pollack, J.B., Toon, O.B., Ackerman, T.P., and McKay, C.P. 1983. Environmental effects of an impact-generated dust cloud: implications for the Cretaceous-Tertiary extinctions. Science 219:287–289.

    Article  PubMed  CAS  Google Scholar 

  • Prinn, R., and Fegley, B. 1987. Bolide impacts, acid rain, and biospheric trauma at the Cretaceous-Tertiary boundary. Earth Planet. Sci. Lett. 83:1–15.

    Article  CAS  Google Scholar 

  • Rambler, M.B., and Margulis, L. 1980. Bacterial resistance to ultraviolet irradiation under anaerobiosis: implications for pre-Phanerozoic evolution. Science 210:638–640.

    Article  PubMed  CAS  Google Scholar 

  • Rampino, M.R., Self, S., and Stothers, R.B. 1988. Volcanic winters. Annu. Rev. Earth Planet. Sci. 16:73–99.

    Article  CAS  Google Scholar 

  • Raven, J.A. 1993. The evolution of vascular land plants in relation to quantitative function of dead water-conducting cells and of stromata. Biol. Rev. (Camb.) 68:49–64.

    Article  Google Scholar 

  • Raven, J.A. 1997. The role of marine biota in the evolution of terrestrial biota: gases and genes. Biogeochemistry (Dordr.) 39:139–164.

    Article  Google Scholar 

  • Reddy, K.J., Haskell, J.B., Sherman, D.M., and Sherman, L.A. 1993. Unicellular, aerobic nitrogen-fixing cyanobacteria of the genus Cyanothece. J. Bacteriol. 175:1284–1292.

    CAS  Google Scholar 

  • Reid, G.C., McAfee, J.R., and Crutzen, P.J. 1978. Effects of intense stratospheric ionization events. Nature (Lond.) 275:489–492.

    Article  CAS  Google Scholar 

  • Rettberg, P., Horneck, G., Strauch, W., Facius, R., and Seckmeyer, G. 1998. Simulation of planetary UV radiation climate on the example of the early Earth. Adv. Space Res. 22:335–339.

    Article  CAS  Google Scholar 

  • Rothschild, L.J. 1990. Earth analogs for martian life. Microbes in evaporites. Icarus 88: 246–260.

    Article  PubMed  CAS  Google Scholar 

  • Rothschild, L.J. 1999. The influence of UV radiation on protistan evolution. J. Eukaryot. Microbiol. 46(5):548–555.

    Article  PubMed  CAS  Google Scholar 

  • Ruderman, M.A. 1974. Possible consequences of nearby supernova explosions for atmospheric ozone and terrestrial life. Science 186:1079–1081.

    Article  Google Scholar 

  • Rye, R., Kuo, P.H., and Holland, H.D. 1995. Atmospheric carbon dioxide concentrations before 2.2 billion years ago. Nature (Lond.) 378:603–605.

    Article  PubMed  CAS  Google Scholar 

  • Sagan, C. 1973. Ultraviolet selection pressure on the earliest organisms. J. Theor. Biol. 39:195–200.

    Article  PubMed  CAS  Google Scholar 

  • Sagan, C., and Chyba, C. 1997. The faint young sun paradox: organic shielding of ultraviolet-labile greenhouse gases. Science 276:1217–1221.

    Article  PubMed  CAS  Google Scholar 

  • Schopf, J.W. 1994. Disparate rates, differing fates: tempo and mode of evolution changed from the Precambrian to the Phanerozoic. Proc. Natl. Acad. Sci. U.S.A. 91:6735–6742.

    Article  PubMed  CAS  Google Scholar 

  • Schopf, J.W., and Packer, B.M. 1987. Early Archean (3.3 billion to 3.5 billion year old) microfossils from Warrawoona Group, Australia. Science 237:70–73.

    Article  PubMed  CAS  Google Scholar 

  • Schopf, J.W., Hayes, J.M., and Walter, M.R. 1983. Evolution of Earth’s earliest ecosystems: recent progress and unsolved problems. In Earth’s Earliest Biosphere, ed. Schopf, J.W., Hayes, J.M., and Walter, M.R, pp. 361–384. Princeton University Press, Princeton.

    Google Scholar 

  • Seitz, E.M., Brockmann, J.P., Sandler, S.J., Clark, A.J., and Kowalczykowski, S.C. 1998. RadA protein is an archeal RecA protein homolog that catalyzes DNA strand exchange. Genes Dev. 12:1248–1253.

    Article  PubMed  CAS  Google Scholar 

  • Shimazaki, K., Igarashi, T., and Kondo, N. 1988. Protection by the epidermis of photosynthesis against UV-C radiation estimated by chlorophyll a fluorescence. Physiol. Plant. 74: 34–3 8.

    Google Scholar 

  • Smith, R.C., and Baker, K.S. 1981. Optical properties of the clearest natural waters. Appl. Optics 20:177–184.

    Article  CAS  Google Scholar 

  • Smith, R.C., Prezelin, B.B., Baker, K.S., Bidigare, R.R., Boucher, N.P., Coley, T., Karentz, D., Macintyre, S., Matlick, H.A., Menzies, D., Ondrusek, M., Wan, Z., and Waters, K.J. 1992. Ozone depletion: ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255:952–959.

    Article  PubMed  CAS  Google Scholar 

  • Stafford, H.A. 1991. Flavonoid evolution: an enzymatic approach. Plant Physiol. 96: 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Stephenson, J.A.E., and Scourfield, M.W.J. 1991. Importance of energetic solar protons in ozone depletion. Nature (Lond.) 352:137–139.

    Article  CAS  Google Scholar 

  • Teramura, A.H., Sullivan, J.H., and Lydon, J. 1990. Effects of UV-B radiation on soybean yield and seed quality: a 6-year field study. Physiol. Plant. 80:5–11.

    Article  Google Scholar 

  • Thorsett, S.E. 1995. Terrestrial implications of cosmological gamma-ray burst models. Astrophys. J. 444:L53-L55.

    Article  Google Scholar 

  • Toon, O.B., Zahnle, K., Morrison, D., Turco, R.P., and Covey, C. 1997. Environmental perturbations caused by impacts of asteroids and comets. Rev. Geophys. 35:41–78.

    Article  CAS  Google Scholar 

  • Towe, K.M. 1996. Environmental oxygen conditions during the origin and early evolution of life. Adv. Space Res. 18:(12)7-(12)15.

    Article  Google Scholar 

  • Turco, R.P., Toon, O.B., Park, C., Whitten, R.C., and Pollack, J.B. 1982. An analysis of the physical, chemical, optical, and historical impacts of the 1908 Tunguska meteor fall. Icarus 50:1–52.

    Article  CAS  Google Scholar 

  • Veizer, J. 1983. Geologic evolution of the archean-proterozoic Earth. In Earth’s Earliest Biosphere, ed. Veizer, J, pp. 241–259. Princeton University Press, Princeton.

    Google Scholar 

  • Vincent, W.F., and Quesada, A. 1994. Ultraviolet radiation effects on cyanobacteria: implications for Antarctic cyanobacterial ecosystems. In Ultraviolet Radiation in Antarctica: Measurements and Biological Effects, eds. C.S. Weiler and P.A. Penhale, pp. 111–124. Antarctic Research Series 62. American Geophysical Union, Washington, DC.

    Chapter  Google Scholar 

  • Walker, J.C.G. 1986. Carbon dioxide on the early Earth. Origins Life Evol. Biosph. 16: 117–127.

    Google Scholar 

  • Walker, J.C.G., and Brimblecombe, P. 1985. Iron and sulfur in the pre-biologic ocean. Precambrian Res. 28:205–222.

    Article  PubMed  CAS  Google Scholar 

  • Walker, J.C.G., Klein, C., Schidlowski, M., Schopf, J.W., Stevenson, D.J., and Walter, M.R. 1983. Environmental evolution of the Archean-Proterozoic Earth. In Earth’s Earliest Biosphere, ed. Walker, J.C.G., Klein, C., Schidlowski, M., Schopf, J.W., Stevenson, D.J., and Walter, M.R, pp. 260–290. Princeton University Press, Princeton.

    Google Scholar 

  • Walter, M.R. 1983. Archean stromatolites: evidence of the Earth’s earliest benthos. In Earth’s Earliest Biosphere. ed. Walter, M.R, pp. 187–203. Princeton University Press, Princeton.

    Google Scholar 

  • Wolbach W.S., Lewis R.S., and Anders E. 1985. Cretaceous extinctions: evidence for wildfires and search for meteoritic materials. Science 230:167–170.

    Article  CAS  Google Scholar 

  • Wood, E.R., Ghane, F., and Grogan, D.W. 1997. Genetic responses of the thermophilic archeon Sulfolobus acidocaldarius to short-wavelength UV light. J. Bacteriol. 179: 5693–5698.

    PubMed  CAS  Google Scholar 

  • Zahnle, K.J., and Walker, J.C.G. 1982. The evolution of solar ultraviolet luminosity. Rev. Geophys. Space Phys. 20:280–292.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cockell, C.S. (2001). A Photobiological History of Earth. In: Cockell, C.S., Blaustein, A.R. (eds) Ecosystems, Evolution, and Ultraviolet Radiation. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3486-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3486-7_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3181-8

  • Online ISBN: 978-1-4757-3486-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics