Skip to main content

Energy Metabolism in Cells

  • Chapter
The Geometry of Biological Time

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 12))

  • 2120 Accesses

Abstract

Cells have three alternative means of procuring energy for digestion and biochemical synthesis, for maintaining concentration gradients, for muscular contractions and cell division, and for maintaining body heat:

  1. 1.

    Photosynthesis: The chloroplasts of green plants capture photons to convert ADP to ATP. Water is split to reduce NADP to NADPH, releasing oxygen.

  2. 2.

    Respiration: The mitochondria use that oxygen and convert ADP to ATP. In the process, NADH is oxidized to NAD and water.

  3. 3.

    Glycolysis: Lacking illuminated chloroplasts or lacking oxygen, cells metabolize sugars by fermentation to make a little ATP from ADP. Historically, this was probably the first way to make the high-energy pyrophosphate bond of ATP. All cells maintain this pathway. Most cells fall back on glycolysis only when they have no better alternative, but it is common to have no better alternative. The microorganisms of yogurt, sauerkraut, gangrene, and food poisoning, for example, subsist wholly on glycolysis, as do facultative anaerobes such as intertidal bivalves (e.g., oysters) and parasitic helminths (e.g., schistosomes) and diving vertebrates (e.g., green sea turtles) during their prolonged periods of contented abstinence from respiration. Red blood cells have no other energy supply. Poorly vascularized tissue such as the cornea of the eye, compact tumors, and embryos rely heavily on glycolysis for their energy needs.

The want of which incomparable Artifice (microscopes) made the Ancients’... erre in their...observations of the smallest sort of Creatures which have been perfunctorily described as the disregarded pieces and huslement of the Creation .... In these pretty Engines are lodged all the perfections of the largest animals... and that which augments the miracle, all these in so narrow a room neither interfere nor impede one another in their operations. Ruder heads stand amazed at prodigious and Colossean pieces of Nature, but in these narrow Engines there is more curious Mathematicks.

Henry Power, physician, Experimental Philosophy, 1663

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Before 1970, NADH was called DPNH.

    Google Scholar 

  2. Today we would say “by F2,6B,” discovered in the 1980s; but Richard et al. (1996b) found that [F2,6B] varies only insignficantly during the oscillation.

    Google Scholar 

  3. They do in Aplysia neurons, whose electrical rhythms are regulated by PFK activity (Chaplain, 1976, and Chapter 14). Chou et al. (1992) and O’Rourke et al. (1994, 1995) have since found glycolytic ocillations driving action potentials also in cardiac myocytes and in pancreatic beta cells. Besides oxygen, also glycerol, acetaldehyde, and ethanol cross the cell membrane quickly by diffusion. In 1970–2, various prior experiments (that later turned out to mislead) informed us that these do not oscillate measurably, and/or do not affect the oscillation in return, or permanently alter its amplitude and period. So none but oxygen seemed good candidates for testing phase responses.

    Google Scholar 

  4. Othmer and Aldridge (1978), and Aldridge and Pye (1979b) favor an alternative interpretation, i.e., that each cell quits oscillating when too isolated from its neighbors by dilution. This possibility can be checked by spectrophotometry of single-cell NADH rhythms (Chance et al., 1968) but definitive results have not been reported.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Winfree, A.T. (2001). Energy Metabolism in Cells. In: The Geometry of Biological Time. Interdisciplinary Applied Mathematics, vol 12. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3484-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3484-3_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3196-2

  • Online ISBN: 978-1-4757-3484-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics