Reproducing Mappings and Characterization of Splines

  • Anatoly Yu. Bezhaev
  • Vladimir A. Vasilenko


In the previous chapter, you learned something about splines and their properties. Now you know some types of splines (interpolating, smoothing, and mixed), some criteria of existence and uniqueness of such splines, some examples of spline-functions.


Hilbert Space Scalar Product Variational Theory Orthogonal Property Linear Continuous Functional 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atteia, M. (1970) : “Fonctions ’spline’ et noyaux reproduisants d’Aronszajn-Bergman”, R. I. R. O., R-3, pp. 31–43Google Scholar
  2. Aronszajn, N. (1950): “Theory of reproducing kernals” ,(Trans. Amer. Math. Soc.) Vol. 68, No. 1–3, pp. 337–407MathSciNetzbMATHCrossRefGoogle Scholar
  3. Bezhaev, A.Yu. (1990): “Reproducing mappings and vector splinefunctions” , in Sov. J. Numer. Math. Modelling, Vol. 5, No. 2, pp. 91–110 (VNU Science Press, Utrecht)Google Scholar
  4. Bezhaev A.Yu. (1991): “Reproducing mappings of Hilbert spaces and characterization of operator splines” , in Modelirovanie v Mekhanike, Novosibirsk Computing Center, Inst. Theoret. Applied Mechanics. Vol. 5(22), No. 1, pp. 3–16 [in Russian]MathSciNetGoogle Scholar
  5. Duchon, J. (1977): “Splines minimizing rotation-invariant seminorms in Sobolev spaces” , in Lect. Notes in Math. Vol. 571, pp. 85–100MathSciNetCrossRefGoogle Scholar
  6. Freeden, W. (1980): “On integral formulas of the (Unit) Sphere and their application to numerical computation of integrals” , Computing, Vol. 25, pp. 131–146MathSciNetzbMATHCrossRefGoogle Scholar
  7. Freeden, W. (1984): “Spherical spline interpolation — basic theory and computational aspects” , J. Comput. Appl. Math. Vol.II, pp. 367–375MathSciNetCrossRefGoogle Scholar
  8. Wahba, G. (1981) :“Spline interpolation and smoothing on the sphere”, SIAM J. Sci. Stat. Comput. Vol. 2, pp. 5–16MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Anatoly Yu. Bezhaev
  • Vladimir A. Vasilenko
    • 1
  1. 1.Institute of Computational Mathematics and Mathematical GeophysicsNovosibirskRussia

Personalised recommendations