Skip to main content

Some History Leading to Design Criteria for Bayesian Prediction

  • Chapter
Optimum Design 2000

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 51))

  • 354 Accesses

Abstract

After a short history of optimum design we develop design criteria for Bayesian prediction in which a combined forecast is used

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atkinson, A.C. and Bailey, R.A. (2001). One hundred years of designed experiments on and off the pages of “Biometrika”. Biometrika 88. (In press).

    Google Scholar 

  • Atkinson, A.C. and Cox, D.R. (1974). Planning experiments for discriminating between models (with discussion). Journal of the Royal Statistical Society B 36, 321–348.

    MathSciNet  MATH  Google Scholar 

  • Atkinson, A.C. and Donev, A.N. (1992). Optimum Experimental Designs. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Atkinson, A.C. and Fedorov, V.V. (1975a). The design of experiments for discriminating between two rival models. Biometrika 62, 57–70.

    Article  MathSciNet  MATH  Google Scholar 

  • Atkinson, A.C. and Fedorov, V.V. (1975b). Optimal design: experiments for discriminating between several models. Biometrika 62, 289–303.

    MathSciNet  MATH  Google Scholar 

  • Box, G. E. P. and Hill, W. J. (1967). Discrimination among mechanisitc models. Technometrics 9, 57–71.

    Article  MathSciNet  Google Scholar 

  • Box, G.E.P. and Hunter, W.G. (1965). Sequential design of experiments for nonlinear models. In Proceedings IBM Scientific Computing Symposium: Statistics Ed. J. J. Korth, pp. 113–137. White Plains: IBM.

    Google Scholar 

  • Box, G.E.P. and Lucas, H.L. (1959). Design of experiments in nonlinear situations. Biometrika 46, 77–90.

    MathSciNet  MATH  Google Scholar 

  • Chaloner, K. and Larntz, K. (1989). Optimal Bayesian design applied to logistic regression experiments. Journal of Statistical Planning and Inference 21, 191–208.

    Article  MathSciNet  MATH  Google Scholar 

  • Chaloner, K. and Verdinelli, I. (1995). Bayesian experimental design: a review. Statistical Science 10, 273–304.

    Article  MathSciNet  MATH  Google Scholar 

  • Chernoff, H. (1953). Locally optimal designs for estimating parameters. Annals of Mathematical Statistics 24, 586–602.

    Article  MathSciNet  MATH  Google Scholar 

  • Cover, T.M. and Thomas, M. (1991). Elements of Information Theory. New York: Wiley.

    Book  MATH  Google Scholar 

  • de la Garza, A. (1954). Spacing of information in polynomial regression. Annals of Mathematical Statistics 25, 123–130.

    Article  MathSciNet  MATH  Google Scholar 

  • Elfving, G. (1952). Optimum allocation in linear regression theory. Annals of Mathematical Statistics 23, 255–262.

    Article  MathSciNet  MATH  Google Scholar 

  • Fedorov, V.V. (1972). Theory of Optimal Experiments. New York: Academic-Press.

    Google Scholar 

  • Fedorov, V.V. and Hackl, P. (1997). Model-Oriented Design of Experiments. Lecture Notes in Statistics 125. New York: Springer.

    Book  MATH  Google Scholar 

  • Fedorov, V. and Khabarov, V. (1986). Duality of optimal designs for model discrimination and parameter estimation. Biometrika 73, 183–190.

    Article  MathSciNet  MATH  Google Scholar 

  • Fedorov, V.V. and Malyutov, M.B. (1972). Optimal designs in regression problems. Math. Operationsforsc. u. Statistik 3, 281–308.

    Article  MathSciNet  MATH  Google Scholar 

  • Fedorov, V.V. and Pázman, A. (1968). Design of physical experiments (statistical methods). Fortschritte der Physik 24, 325–345.

    Article  Google Scholar 

  • Guest, P.G. (1958). The spacing of observations in polynomial regression. Annals of Mathematical Statistics 29, 294–299.

    Article  MathSciNet  MATH  Google Scholar 

  • Hoel, P.G. (1958). Efficiency problems in polynomial estimation. Annals of Mathematical Statistics 29, 1134–1145.

    Article  MathSciNet  MATH  Google Scholar 

  • Hoeting, J.A., Madigan, D., Raftery A.E. and Volinsky C.T. (1999). Bayesian model averaging: a tutorial. Statistical Science 14, 382–417.

    Article  MathSciNet  MATH  Google Scholar 

  • Kiefer, J. (1958). On the nonrandomized optimality and randomized nonoptimality of symmetrical designs. Annals of Mathematical Statistics 29, 675–699.

    Article  MathSciNet  MATH  Google Scholar 

  • Kiefer, J. (1959). Optimum experimental designs (with discussion). J. Royal Statistical Soc. B 21, 272–319.

    MathSciNet  MATH  Google Scholar 

  • Kiefer, J. and Wolfowitz, J. (1960). The equivalence of twoextremum problems. Canadian Journal of Mathematics 12, 363–366.

    Article  MathSciNet  MATH  Google Scholar 

  • Läuter, E. (1974). Experimental design in a class of models. Mathematische Operationsforschung und Statistik, Serie Statistik 5, 379–398.

    Article  MATH  Google Scholar 

  • Meyer, R.D., Steinberg, D.M. and Box, G.E.P. (1996). Follow-up designs to resolve confounding in multifactor experiments. Technometrics 38, 303–332.

    Article  MATH  Google Scholar 

  • O’Hagan, A. (1994). Kendalls Advanced Theory of Statistics, Volume 2B: Bayesian Inference. London: Edward Arnold.

    Google Scholar 

  • Pukelsheim, F. (1993). Optimal Design of Experiments. New York: Wiley.

    MATH  Google Scholar 

  • Sebastiani, P. and Wynn, H.P. (2000). Maximum entropy sampling and optimal Bayesian experimental design. J. Royal Statistical Soc. B 62, 145–157.

    Article  MathSciNet  MATH  Google Scholar 

  • Silvey, S.D. and Titterington, D.M. (1973). A geometric approach to optimal design theory. Biometrika 60, 15–19.

    Article  MathSciNet  Google Scholar 

  • Smith, K. (1918). On the standard deviations of adjusted and interpolated values of an observed polynomial function and its constants and the guidance they give towards a proper choice of the distribution of observations. Biometrika 12, 1–85.

    Google Scholar 

  • Wald, A. (1943). On the efficient design of statistical investigations. Annals of Mathematical Statistics 14, 134–140.

    Article  MathSciNet  MATH  Google Scholar 

  • Wynn, H.P. (1970). The sequential generation of D-optimal experimental designs. Annals of Mathematical Statistics 41, 1055–1064.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Atkinson, A.C., Fedorov, V.V. (2001). Some History Leading to Design Criteria for Bayesian Prediction. In: Atkinson, A., Bogacka, B., Zhigljavsky, A. (eds) Optimum Design 2000. Nonconvex Optimization and Its Applications, vol 51. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3419-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3419-5_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4846-5

  • Online ISBN: 978-1-4757-3419-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics