Simulation of Digital Camera Images from Hyperspectral Input

  • Philippe Longère
  • David H. Brainard


An important goal for digital color cameras is to record enough information about a scene so that it can be reproduced accurately for a human observer. By accurately, we mean so that the human observer will perceive the reproduction as looking like the original.


Spectral Sensitivity Human Visual System Hyperspectral Image Sensor Class Simulated Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. Barnard: Pratical Color Constancy. Ph.D. thesis, Simon Fraser University, 1999.Google Scholar
  2. [2]
    B. Bayer: “Color imaging array.” U.S. Patent # 3,971, 065, 1976.Google Scholar
  3. [3]
    J. Bergen et al.: “Hierarchical model-based motion estimation.” in Proc. of the Second European Conference on Computer Vision, pp. 237–252, 1992.Google Scholar
  4. [4]
    D. Brainard: “Calibration of a computer controlled color monitor.” Color Research and Application 14: 23–34, 1989.CrossRefGoogle Scholar
  5. [5]
    D. Brainard: “Bayesian method for reconstructing color images from trichromatic samples.” in Proc. of ISandT 47th Annual Meeting, pp. 375380, 1994.Google Scholar
  6. [6]
    D. Brainard: “Colorimetry.” 1995.Google Scholar
  7. [7]
    D. Brainard: “Color specification” 2000.Google Scholar
  8. [8]
    D. Brainard, W. Freeman: `Bayesian color constancy.“ J. of the Optical Society of America A 14: 1393–1411, 1997.Google Scholar
  9. [9]
    D. Brainard, D. Sherman: “Reconstructing image from trichromatic samples: from basic research to practical applications.” in Proc. of ISandT/SID Color Imaging Conference, pp. 4–10, 1995.Google Scholar
  10. [10]
    G. Brelstaff et al.: “Hyper-spectral camera system: acquisition and analysis.” in Proc. of SPIE Conference on Geographic Information Systems, Photogrammetry, and Geological/Geophysical Remote Sensing, pp. 150159, 1995.Google Scholar
  11. [11]
    G. Buchsbaum: “A spatial processor model for object colour perception.” J. Franklin Inst. 310: 1–26, 1980.CrossRefGoogle Scholar
  12. [12]
    P. Catrysse, B. Wandell, A. E. Gamal: “Comparative analysis of color architectures for image sensors.” in SPIE Proc.; Sensors, cameras, and applications for digital photography, vol. 3650–04, pp. 26–35, 1999.Google Scholar
  13. [13]
    CIE: Recommendations on uniform color spaces, color difference equations, and psychometric terms. Tech. Rep. Supplement No.2 to CIE publication No.15, Bureau Central de la CIE, 1978.Google Scholar
  14. [14]
    CIE: Colorimetry. Tech. rep., Bureau Central de la CIE, 1986.Google Scholar
  15. [15]
    J. Cohen: “Dependency of the spectral curves of the Munsell color chips.” Psychonomic Science 1: 369–370, 1964.Google Scholar
  16. [16]
    D. Cok: “Reconstruction of ccd images using template matching.” in Proc. of ISandT 47th Annual Meeting, pp. 380–385, 1994.Google Scholar
  17. [17]
    M. Fairchild: Color Appearance Models. Addison-Wesley, 1997.Google Scholar
  18. [18]
    G. Finlayson, P. Hubel, S. Hordley: “Colour by correlation” in Proc. of ISandT/SID Color Imaging Conference, pp. 6–11, 1997.Google Scholar
  19. [19]
    W. Freeman: “Method and apparatus for reconstructing missing color samples.” U.S. Patent # 4,663,655; Polaroid Corporation, 1987.Google Scholar
  20. [20]
    G. Healey, R. Kondepudy: “Radiometric CCD camera calibration and noise estimation.” IEEE Transactions on Pattern Analysis and Machine Intelligence 16 (3): 267–276, 1994.CrossRefGoogle Scholar
  21. [21]
    E. Hecht: Optics. Addison-Wesley, 1997.Google Scholar
  22. [22]
    D. Heeger: Notes on Motion Estimation. Stanford University, 1996, Scholar
  23. [23]
    G. Holst: Sampling, Aliasing, and Data Fidelity for Electronic Imaging Systems, Communications, and Data Acquisition. SPIE, 1998.Google Scholar
  24. [24]
    B. Horn: “Exact reproduction of colored images.” Computer Vision Graphics and Image Processing 26: 135–167, 1984.MathSciNetCrossRefGoogle Scholar
  25. [25]
    A. Hurlbert: “Computational models of color constancy” 1998.Google Scholar
  26. [26]
    D. Judd, D. MacAdam, G. Wyszecki: “Spectral distribution of typical daylight as a function of correlated color temperature.” J. of the Optical Society of America 54: 1031–1040, 1964.CrossRefGoogle Scholar
  27. [27]
    K. Kelly, K. Gibson, D. Nickerson: “Tristimulus specification of the munsell book of color from spectrophotometric measurements.” J. of the Optical Society of America 33: 355–376, 1943.CrossRefGoogle Scholar
  28. [28]
    R. Kingslake: Lens Design Fundamentals. Academic Press, 1978.Google Scholar
  29. [29]
    E. Krinov: “Spectral reflectance properties of natural formations.” in Technical Translation: TT-439, National Research Council of Canada, 1947.Google Scholar
  30. [30]
    L. Maloney: “Evaluation of linear models of surface spectral reflectance with small number of parameters.” J. of the Optical Society of America A 3: 1673–1683, 1986.CrossRefGoogle Scholar
  31. [31]
    L. Maloney: “Color constancy and color perception: The linear models framework.” 1992.Google Scholar
  32. [32]
    L. Maloney: “Physics-based approaches to modeling surface color perception.” 2000.Google Scholar
  33. [33]
    L. Maloney, B. Wandell: “Color constancy: a method for recovering surface spectral reflectance.” J. of the Optical Society of America A 3: 29–33, 1986.CrossRefGoogle Scholar
  34. [34]
    D. Nickerson: Spectrophotometric data for a collection of Munsell sample. Tech. rep., U.S. Department of Agriculture, 1957.Google Scholar
  35. [35]
    J. Parkkinen, J. Hallikainen, T. Jaaskelainen: “Characteristics spectra of munsell chips.” J. of the Optical Society of America A 6: 318–322, 1989.CrossRefGoogle Scholar
  36. [36]
    C. Parraga et al.: “Color and luminance information in natural scenes.” J. of the Optical Society of America A 15: 563–569, 1998.CrossRefGoogle Scholar
  37. [37]
    D. Ruderman, T. Cronin, C. Chiao: “Statistics of cone responses to natural images: implications for visual coding.” J. of the Optical Society of America A 15: 2036–2045, 1998.Google Scholar
  38. [38]
    G. Sharma, H. Trussel: “Characterization of scanner sensitivity.” in Proc. of ISandT/SID Color Imaging Conference, pp. 103–107, 1993.Google Scholar
  39. [39]
    R. Short, D. Williams, A. Jones: “Image capture simulation using an accurate and realistic lens model.” in SPIE Proc.: Sensors, cameras, and applications for digital photography, vol. 3650–20, pp. 138–148, 1999.Google Scholar
  40. [40]
    E. Simoncelli: “Bayesian denoising of visual images in the wavelet domain.” 1999.Google Scholar
  41. [41]
    P. Vora et al.: Digital color cameras - 1 - Response models. Tech. Rep. HPL-97–53/54, Hewlett Packard, 1997, Scholar
  42. [42]
    P. Vora et al.: Digital color cameras - 2 - Spectral response. Tech. Rep. HPL-97–54, Hewlett Packard, 1997.Google Scholar
  43. [43]
    B. Wandell: “Color rendering of camera data.” Color Research and Application Sup. 11: S30 — S33, 1986.Google Scholar
  44. [44]
    B. Wandell: Foundations of Vision. Sinauer Associates, 1995.Google Scholar
  45. [45]
    B. Wandell, L. Silverstein: “Color technology and color reproduction.” 2000.Google Scholar
  46. [46]
    M. Webster, J. Mollon: “Adaptation and the color statistics of natural images.” Vision Research 37: 3283–3298, 1997.CrossRefGoogle Scholar
  47. [47]
    M. Wober, R. Soini: “Method and apparatus for recovering image data through the use of a color test pattern.” U.S. Patent #5,475,769; Polaroid Corporation, 1995.Google Scholar
  48. [48]
    X. Zhang: Spatial color fidelity metric S-CIELAB. Ph.D. thesis, Stanford University, 1997.Google Scholar
  49. [49]
    X. Zhang, B. Wandell: “A spatial extension of CIELAB for digital color image reproduction.” Society for Information Display Journal 5: 61–64, 1997.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Philippe Longère
    • 1
  • David H. Brainard
    • 1
  1. 1.Department of PsychologyUC Santa BarbaraSanta BarbaraUSA

Personalised recommendations