Color Spaces and Color Metrics

  • Karl-Heinz Bäuml
  • Xuemei Zhang
  • Brian Wandell


The absorptions by the cone photoreceptors govern many of the important properties of color vision. Perhaps the most important consequence of the cone properties is that, even without reference to the spatial structure of the image, knowledge of the cone absorption properties can be used to predict when a pair of lights with different spectral power distributions will match in appearance. While the cone absorptions may tell us that two lights match, without knowing the spatial pattern of absorptions we do not know much about the appearance of the lights; do they appear light, or dark? Red or green?


Spatial Frequency Color Space Optical Society Color Constancy Chromatic Aberration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Arend: “How much does illuminant color affect unattributed colors?” Journal of the Optical Society of America A 10: 2134–2147, 1993.CrossRefGoogle Scholar
  2. [2]
    K.-H. Bäuml: “Illuminant changes under different surface collections: examining some principles of color appearance.” Journal of the the Optical Society of America A 12 (2): 261–271, 1995.CrossRefGoogle Scholar
  3. [3]
    K.-H. Bäuml: “Simultaneous color constancy: how surface color perception varies with the illuminant.” Vision Research 39: 1531–1550, 1999.CrossRefGoogle Scholar
  4. [4]
    K.-H. Bäuml: “Increments and decrements in color constancy.” Journal of the Optical Society of America A 2001, (in press).Google Scholar
  5. [5]
    K.-H. Bäuml, B. A. Wandell: “The color appearance of mixture gratings.” Vision Research 36: 2849–2864, 1996.CrossRefGoogle Scholar
  6. [6]
    D. H. Brainard: “Color constancy in the nearly natural image. 2. achromatic loci.” Journal of the Optical Society of America A 14: 307–325, 1998.CrossRefGoogle Scholar
  7. [7]
    D. H. Brainard, W. A. Brunt, J. M. Speigle: “Color constancy in the nearly natural image. 1. asymmetric matches.” Journal of the Optical Society of America A 14: 2091–2110, 1997.CrossRefGoogle Scholar
  8. [8]
    D. H. Brainard, B. A. Wandell: “Asymmetric color matching: how color appearance depends on the illuminant.” Journal of the Optical Society of America 9: 1433–1448, 1992.CrossRefGoogle Scholar
  9. [9]
    R. W. Burnham, R. M. Evans, S. M. Newell: “Influence of color perception of adaptation to illumination.” Journal of the Optical Society of America 42: 597, 1952.CrossRefGoogle Scholar
  10. [10]
    E.-J. Chichilnisky, B. A. Wandell: “Photoreceptor sensitivity changes explain color appearance shifts induced by large uniform backgrounds in dichoptic matching.” Vision Research 35 (2): 239–254, 1995.CrossRefGoogle Scholar
  11. [11]
    E.-J. Chichilnisky, B. A. Wandell: “Seeing gray through the on and off pathways.” Visual Neuroscience 13 (3): 591–596, 1996.CrossRefGoogle Scholar
  12. [12]
    E.-J. Chichilnisky, B. A. Wandell: “Trichromatic opponent colors classification.” Vision Research 39 (20): 3444–3458, 1999.CrossRefGoogle Scholar
  13. [13]
    CIE: Recommendations on uniform color spaces, color difference equations, psychometric color terms. Publication CIE 15 (E.-1.3.1), Supplement No. 2, Bureau Central de la CIE, Vienna, 1971.Google Scholar
  14. [14]
    K. K. De Valois, E. Switkes: “Simultaneous masking interactions between chromatic and luminance gratings.” Jounal of the Optical Society ofAmerica 73 (1): 11–18, 1983.CrossRefGoogle Scholar
  15. [15]
    R. L. De Valois et al.: “Hue scaling of isoluminant and cone-specific lights.” Vision Research 37 (7): 885–897, 1997.CrossRefGoogle Scholar
  16. [16]
    A. E. Elsner, S. A. Berns, J. Pokorny: “Changes in constant-hue loci with spatial frequency.” Color Research and its Applications 12: 42–50, 1987.CrossRefGoogle Scholar
  17. [17]
    M. D. Fairchild, R. S. Berns: “Image color-appearance specification through extension of cielab.” Color Research and Application 18(3):178190, 1993.Google Scholar
  18. [18]
    E. M. Granger, J. C. Heurtley: “Visual chromaticity — modulation transfer function.” Journal of the Optical Society of America 63: 1173–1174, 1973.CrossRefGoogle Scholar
  19. [19]
    R. W. G. Hunt: “A model of colour vision for predicting colour appearance.” Color Research and Applications 7: 95–112, 1982.CrossRefGoogle Scholar
  20. [20]
    R. W. G. Hunt: “A model of colour vision for predicting dour appearance in various viewing conditions.” Color Research and Applications 12: 297314, 1987.Google Scholar
  21. [21]
    R. W. G. Hunt: “Revised colour-appearance model for related and unrelated clours.” Color Research and Applications 16: 146–165, 1991.CrossRefGoogle Scholar
  22. [22]
    R. W. G. Hunt: “An improved predictor of clourfulness in a model of colour vision.” Color Research and Applications 19: 23–26, 1994.Google Scholar
  23. [23]
    R. W. G. Hunt: The Reproduction of Colour. Fountain Press, England, 5th edn., 1995.Google Scholar
  24. [24]
    R. W. G. Hunt, M. R. Pointer: “A colour-appearance transform for the cie 1931 standard colorimetric observer.” Color Research and Applications 10: 165–179, 1985.CrossRefGoogle Scholar
  25. [25]
    L. M. Hurvich, D. Jameson: “Further development of a quantified opponent-colours theory.” in England National Physical Laboratory Symposium No.8: Visual Problems of Color, ed. Teddington, London: H.M.S.O., 1958.Google Scholar
  26. [26]
    C. R. Ingling Jr., H. M. O. Schneibner: “Color naming of small foveal fields.” Vision Research 10: 501–511, 1970.CrossRefGoogle Scholar
  27. [27]
    P. K. Kaiser, R. M. Boynton: Human color vision. Optical Society of America, Washington, D.C., 2nd edn., 1996.Google Scholar
  28. [28]
    D. H. Kelly: “Spatiotemporal variation of chromatic and achromatic contrast thresholds.” Journal of the Optical Society of America 73 (6): 742–750, 1983.CrossRefGoogle Scholar
  29. [29]
    W. E. Knowles Middleton, M. C. Holmes: “The apparent colors of surfaces of small subtense–a preliminary report.” Journal of the Optical Society of America 39 (7): 582–592, 1949.CrossRefGoogle Scholar
  30. [30]
    G. E. Legge, J. M. Foley: “Contrast masking in human vision.” Journal of the Optical Society of America 70: 1458–1471, 1980.CrossRefGoogle Scholar
  31. [31]
    M. R. Luo, M.-C. Lo, W.-G. Kuo: “The LLAB(l:c) colour model.” Color Research and Applications 21: 412–429, 1996.CrossRefGoogle Scholar
  32. [32]
    D. L. Marimont, B. A. Wandell: “Matching color images: the effects of axial chromatic aberration.” Journal of the Optical Society of America 11 (12): 1–11, 1994.Google Scholar
  33. [33]
    R. Mausfeld, R. Niederee: “An inquiry into relational concepts of colour, based on incremental principles of colour coding for minimal relational stimuli.” Perception 22 (4): 427–462, 1993.CrossRefGoogle Scholar
  34. [34]
    K. T. Mullen: “The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings.” Journal of Physiology 359: 381–400, 1985.Google Scholar
  35. [35]
    Y. Nayatani, K. Takahama, H. Sobagaki: “Formulation of a nonlinear model of chromatic adaptation.” Color Research and Application 6 (3): 161–171, 1981.CrossRefGoogle Scholar
  36. [36]
    A. B. Poirson, B. A. Wandell: “Appearance of colored patterns: pattern-color separability.” Journal of the Optical Society of America 10 (12): 2458–2470, 1993.CrossRefGoogle Scholar
  37. [37]
    A. B. Poirson, B. A. Wandell: “Pattern-color separable pathways predict sensitivity to simple colored patterns.” Vision Research 36 (4): 515–526, 1996.CrossRefGoogle Scholar
  38. [38]
    N. Sekiguchi, D. R. Williams, D. H. Brainard: “Efficiency in detection of isoluminant and isochromatic interference fringes.” Journal of the Optical Society of America 10 (10): 2118–2133, 1993.CrossRefGoogle Scholar
  39. [39]
    S. K. Shevell: “The dual role of chromatic backgrounds in color perception.” Vision Research 18: 1649–1661, 1978.CrossRefGoogle Scholar
  40. [40]
    C. J. van den Branden Lambrecht, J. E. Farrell: “Perceptual quality metric for digitally coded color images.” in Proceedings of the European Signal Processing Conference,pp. 1175–1178, Trieste, Italy, 1996, available on Scholar
  41. [41]
    J. Walraven: “Discounting the background–the missing link in the explanation of chromatic adaptation.” Vision Research 16: 289–295, 1976.CrossRefGoogle Scholar
  42. [42]
    B. Wandell: Foundations of Vision. Sinauer Press, Sunderland, MA, 1995.Google Scholar
  43. [43]
    E. G. T. Wassef: “Linearity of the relationship between the tristimulus values of corresponding colours seen under different conditions of chromatic adaptation.” Optica Acta 6: 378, 1959.CrossRefGoogle Scholar
  44. [44]
    A. B. Watson: “DCT quantization matrices visually optimized for individual images.” in SPIE Proceedings, 1993.Google Scholar
  45. [45]
    A. B. Watson, R. Borthwick, M. Taylor: “Image quality and entropy masking.” in SPIE Proceedings, vol. 3016, 1997.Google Scholar
  46. [46]
    J. Werner, J. Walraven: “Effect of chromatic adaptation on the achromatic locus: The role of contrast, luminance and background color.” Vision Research 22: 929–943, 1982.CrossRefGoogle Scholar
  47. [47]
    H. R. Wilson, D. K. McFarlane, G. C. Phillips: “Spatial frequency tuning of orientation selective units estimated by oblique masking.” Vision Research 23: 873–882, 1983.CrossRefGoogle Scholar
  48. [48]
    G. Wyszecki, W. S. Stiles: Color science: concepts and methods, quantitative data and formulae. Wiley, New York, 1982.Google Scholar
  49. [49]
    X. Zhang, J. E. Farrell, B. A. Wandell: “Applications of a spatial extension to CIELAB.” in Proceedings of the IST/SPIE 9th Annual Symposium on Electronic Imaging, vol. 3025, pp. 154–157, 1997.Google Scholar
  50. [50]
    X. Zhang, E. Setiawan, B. A. Wandell: “Image distortion maps.” in Final Program and Proceedings of the Fifth IST/SID Color Imaging Conference. Color Science, Systems and Applications, pp. 120–125, IS SID, Scottsdale, AZ, USA, 1997.Google Scholar
  51. [51]
    X. Zhang, B. A. Wandell: “A spatial extension of CIELAB for digital color image reproduction.” Journal of the SID 5 (1): 61–63, 1997.Google Scholar
  52. [52]
    X. Zhang, B. A. Wandell: “Color image fidelity metrics evaluated using image distortion maps.” Signal Processing 70: 201–214, 1998.zbMATHCrossRefGoogle Scholar
  53. [53]
    X. Zhang et al.: “Color image quality metric 5-CIELAB and its application on halftone texture visibility.” in COMPCON97 Digest of Papers, pp. 4448, IEEE, 1997.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Karl-Heinz Bäuml
    • 1
  • Xuemei Zhang
    • 2
  • Brian Wandell
    • 3
  1. 1.Institut für PsychologieUniversität RegensburgRegensburgGermany
  2. 2.Agilent LaboratoriesPalo AltoUSA
  3. 3.Psychology DepartmentStanford UniversityStanfordUSA

Personalised recommendations