Skip to main content

Color Spaces and Color Metrics

  • Chapter

Abstract

The absorptions by the cone photoreceptors govern many of the important properties of color vision. Perhaps the most important consequence of the cone properties is that, even without reference to the spatial structure of the image, knowledge of the cone absorption properties can be used to predict when a pair of lights with different spectral power distributions will match in appearance. While the cone absorptions may tell us that two lights match, without knowing the spatial pattern of absorptions we do not know much about the appearance of the lights; do they appear light, or dark? Red or green?

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Arend: “How much does illuminant color affect unattributed colors?” Journal of the Optical Society of America A 10: 2134–2147, 1993.

    Article  Google Scholar 

  2. K.-H. Bäuml: “Illuminant changes under different surface collections: examining some principles of color appearance.” Journal of the the Optical Society of America A 12 (2): 261–271, 1995.

    Article  Google Scholar 

  3. K.-H. Bäuml: “Simultaneous color constancy: how surface color perception varies with the illuminant.” Vision Research 39: 1531–1550, 1999.

    Article  Google Scholar 

  4. K.-H. Bäuml: “Increments and decrements in color constancy.” Journal of the Optical Society of America A 2001, (in press).

    Google Scholar 

  5. K.-H. Bäuml, B. A. Wandell: “The color appearance of mixture gratings.” Vision Research 36: 2849–2864, 1996.

    Article  Google Scholar 

  6. D. H. Brainard: “Color constancy in the nearly natural image. 2. achromatic loci.” Journal of the Optical Society of America A 14: 307–325, 1998.

    Article  Google Scholar 

  7. D. H. Brainard, W. A. Brunt, J. M. Speigle: “Color constancy in the nearly natural image. 1. asymmetric matches.” Journal of the Optical Society of America A 14: 2091–2110, 1997.

    Article  Google Scholar 

  8. D. H. Brainard, B. A. Wandell: “Asymmetric color matching: how color appearance depends on the illuminant.” Journal of the Optical Society of America 9: 1433–1448, 1992.

    Article  Google Scholar 

  9. R. W. Burnham, R. M. Evans, S. M. Newell: “Influence of color perception of adaptation to illumination.” Journal of the Optical Society of America 42: 597, 1952.

    Article  Google Scholar 

  10. E.-J. Chichilnisky, B. A. Wandell: “Photoreceptor sensitivity changes explain color appearance shifts induced by large uniform backgrounds in dichoptic matching.” Vision Research 35 (2): 239–254, 1995.

    Article  Google Scholar 

  11. E.-J. Chichilnisky, B. A. Wandell: “Seeing gray through the on and off pathways.” Visual Neuroscience 13 (3): 591–596, 1996.

    Article  Google Scholar 

  12. E.-J. Chichilnisky, B. A. Wandell: “Trichromatic opponent colors classification.” Vision Research 39 (20): 3444–3458, 1999.

    Article  Google Scholar 

  13. CIE: Recommendations on uniform color spaces, color difference equations, psychometric color terms. Publication CIE 15 (E.-1.3.1), Supplement No. 2, Bureau Central de la CIE, Vienna, 1971.

    Google Scholar 

  14. K. K. De Valois, E. Switkes: “Simultaneous masking interactions between chromatic and luminance gratings.” Jounal of the Optical Society ofAmerica 73 (1): 11–18, 1983.

    Article  Google Scholar 

  15. R. L. De Valois et al.: “Hue scaling of isoluminant and cone-specific lights.” Vision Research 37 (7): 885–897, 1997.

    Article  Google Scholar 

  16. A. E. Elsner, S. A. Berns, J. Pokorny: “Changes in constant-hue loci with spatial frequency.” Color Research and its Applications 12: 42–50, 1987.

    Article  Google Scholar 

  17. M. D. Fairchild, R. S. Berns: “Image color-appearance specification through extension of cielab.” Color Research and Application 18(3):178190, 1993.

    Google Scholar 

  18. E. M. Granger, J. C. Heurtley: “Visual chromaticity — modulation transfer function.” Journal of the Optical Society of America 63: 1173–1174, 1973.

    Article  Google Scholar 

  19. R. W. G. Hunt: “A model of colour vision for predicting colour appearance.” Color Research and Applications 7: 95–112, 1982.

    Article  Google Scholar 

  20. R. W. G. Hunt: “A model of colour vision for predicting dour appearance in various viewing conditions.” Color Research and Applications 12: 297314, 1987.

    Google Scholar 

  21. R. W. G. Hunt: “Revised colour-appearance model for related and unrelated clours.” Color Research and Applications 16: 146–165, 1991.

    Article  Google Scholar 

  22. R. W. G. Hunt: “An improved predictor of clourfulness in a model of colour vision.” Color Research and Applications 19: 23–26, 1994.

    Google Scholar 

  23. R. W. G. Hunt: The Reproduction of Colour. Fountain Press, England, 5th edn., 1995.

    Google Scholar 

  24. R. W. G. Hunt, M. R. Pointer: “A colour-appearance transform for the cie 1931 standard colorimetric observer.” Color Research and Applications 10: 165–179, 1985.

    Article  Google Scholar 

  25. L. M. Hurvich, D. Jameson: “Further development of a quantified opponent-colours theory.” in England National Physical Laboratory Symposium No.8: Visual Problems of Color, ed. Teddington, London: H.M.S.O., 1958.

    Google Scholar 

  26. C. R. Ingling Jr., H. M. O. Schneibner: “Color naming of small foveal fields.” Vision Research 10: 501–511, 1970.

    Article  Google Scholar 

  27. P. K. Kaiser, R. M. Boynton: Human color vision. Optical Society of America, Washington, D.C., 2nd edn., 1996.

    Google Scholar 

  28. D. H. Kelly: “Spatiotemporal variation of chromatic and achromatic contrast thresholds.” Journal of the Optical Society of America 73 (6): 742–750, 1983.

    Article  Google Scholar 

  29. W. E. Knowles Middleton, M. C. Holmes: “The apparent colors of surfaces of small subtense–a preliminary report.” Journal of the Optical Society of America 39 (7): 582–592, 1949.

    Article  Google Scholar 

  30. G. E. Legge, J. M. Foley: “Contrast masking in human vision.” Journal of the Optical Society of America 70: 1458–1471, 1980.

    Article  Google Scholar 

  31. M. R. Luo, M.-C. Lo, W.-G. Kuo: “The LLAB(l:c) colour model.” Color Research and Applications 21: 412–429, 1996.

    Article  Google Scholar 

  32. D. L. Marimont, B. A. Wandell: “Matching color images: the effects of axial chromatic aberration.” Journal of the Optical Society of America 11 (12): 1–11, 1994.

    Google Scholar 

  33. R. Mausfeld, R. Niederee: “An inquiry into relational concepts of colour, based on incremental principles of colour coding for minimal relational stimuli.” Perception 22 (4): 427–462, 1993.

    Article  Google Scholar 

  34. K. T. Mullen: “The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings.” Journal of Physiology 359: 381–400, 1985.

    Google Scholar 

  35. Y. Nayatani, K. Takahama, H. Sobagaki: “Formulation of a nonlinear model of chromatic adaptation.” Color Research and Application 6 (3): 161–171, 1981.

    Article  Google Scholar 

  36. A. B. Poirson, B. A. Wandell: “Appearance of colored patterns: pattern-color separability.” Journal of the Optical Society of America 10 (12): 2458–2470, 1993.

    Article  Google Scholar 

  37. A. B. Poirson, B. A. Wandell: “Pattern-color separable pathways predict sensitivity to simple colored patterns.” Vision Research 36 (4): 515–526, 1996.

    Article  Google Scholar 

  38. N. Sekiguchi, D. R. Williams, D. H. Brainard: “Efficiency in detection of isoluminant and isochromatic interference fringes.” Journal of the Optical Society of America 10 (10): 2118–2133, 1993.

    Article  Google Scholar 

  39. S. K. Shevell: “The dual role of chromatic backgrounds in color perception.” Vision Research 18: 1649–1661, 1978.

    Article  Google Scholar 

  40. C. J. van den Branden Lambrecht, J. E. Farrell: “Perceptual quality metric for digitally coded color images.” in Proceedings of the European Signal Processing Conference,pp. 1175–1178, Trieste, Italy, 1996, available on http://ltswww.epfl.ch/pub_files/vdb/.

    Google Scholar 

  41. J. Walraven: “Discounting the background–the missing link in the explanation of chromatic adaptation.” Vision Research 16: 289–295, 1976.

    Article  Google Scholar 

  42. B. Wandell: Foundations of Vision. Sinauer Press, Sunderland, MA, 1995.

    Google Scholar 

  43. E. G. T. Wassef: “Linearity of the relationship between the tristimulus values of corresponding colours seen under different conditions of chromatic adaptation.” Optica Acta 6: 378, 1959.

    Article  Google Scholar 

  44. A. B. Watson: “DCT quantization matrices visually optimized for individual images.” in SPIE Proceedings, 1993.

    Google Scholar 

  45. A. B. Watson, R. Borthwick, M. Taylor: “Image quality and entropy masking.” in SPIE Proceedings, vol. 3016, 1997.

    Google Scholar 

  46. J. Werner, J. Walraven: “Effect of chromatic adaptation on the achromatic locus: The role of contrast, luminance and background color.” Vision Research 22: 929–943, 1982.

    Article  Google Scholar 

  47. H. R. Wilson, D. K. McFarlane, G. C. Phillips: “Spatial frequency tuning of orientation selective units estimated by oblique masking.” Vision Research 23: 873–882, 1983.

    Article  Google Scholar 

  48. G. Wyszecki, W. S. Stiles: Color science: concepts and methods, quantitative data and formulae. Wiley, New York, 1982.

    Google Scholar 

  49. X. Zhang, J. E. Farrell, B. A. Wandell: “Applications of a spatial extension to CIELAB.” in Proceedings of the IST/SPIE 9th Annual Symposium on Electronic Imaging, vol. 3025, pp. 154–157, 1997.

    Google Scholar 

  50. X. Zhang, E. Setiawan, B. A. Wandell: “Image distortion maps.” in Final Program and Proceedings of the Fifth IST/SID Color Imaging Conference. Color Science, Systems and Applications, pp. 120–125, IS SID, Scottsdale, AZ, USA, 1997.

    Google Scholar 

  51. X. Zhang, B. A. Wandell: “A spatial extension of CIELAB for digital color image reproduction.” Journal of the SID 5 (1): 61–63, 1997.

    Google Scholar 

  52. X. Zhang, B. A. Wandell: “Color image fidelity metrics evaluated using image distortion maps.” Signal Processing 70: 201–214, 1998.

    Article  MATH  Google Scholar 

  53. X. Zhang et al.: “Color image quality metric 5-CIELAB and its application on halftone texture visibility.” in COMPCON97 Digest of Papers, pp. 4448, IEEE, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bäuml, KH., Zhang, X., Wandell, B. (2001). Color Spaces and Color Metrics. In: van den Branden Lambrecht, C.J. (eds) Vision Models and Applications to Image and Video Processing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3411-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3411-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4905-9

  • Online ISBN: 978-1-4757-3411-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics