Introduction to Neurophysiology of the Primate Visual System

  • Lisa J. Croner
  • Thomas Wachtler


The visual system is the most studied sensory system. This chapter provides a brief introduction to the neurophysiology of the primate visual system, highlighting at the end some of the questions for which modeling may be useful. The information presented, while reflecting our understanding of the primate brain, comes from research in both primates (primarily Old World monkeys) and, for some processes that are likely conserved across higher taxa, other vertebrates.


Ganglion Cell Receptive Field Bipolar Cell Lateral Geniculate Nucleus Amacrine Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Further reading

  1. J.E. Dowling. (1987) The retina: an approachable part of the brain, Belknap Press of Harvard University Press, Cambridge, MA.Google Scholar
  2. D.H. Hubel (1995) Eye, brain, and vision, Scientific American Library, New York.Google Scholar
  3. M.W. Levine and J. M. Shefner (1991) Fundamentals of sensation and perception, 2nd ed., Brooks/Cole, Pacific Grove, CA.Google Scholar
  4. R.W. Rodieck (1998) The first steps in seeing, Sinauer Associates, Sunderland, MA.Google Scholar
  5. L. Spillman and J.S. Werner, eds. (1990) Visual perception: The neurophysiological foundations, Academic Press, San Diego, CA.Google Scholar
  6. B.A. Wandell (1995) Foundations of vision, Sinauer Associates, Sunderland, MA.Google Scholar
  7. [1]
    S.W. Kuffler, J.G. Nicholls, and A.R. Martin (1984) From Neuron to Brain, 2n d edition, Sinauer Associates Inc., Sunderland, MA.Google Scholar
  8. [2]
    K. Hartline (1938) Am. J. Physiol. V. 121, pp. 400–415.Google Scholar
  9. [3]
    G.D. DeAngelis, I. Ohzawa, and R.D. Freeman (1995) T.I.N.S. V. 18, pp. 451–458.Google Scholar
  10. [4]
    A.G. Leventhal, K.G. Thompson, D. Liu, Y. Zhou, and S. J. Ault (1995) J. Neurosci. V. 15, pp. 1808–1818.Google Scholar
  11. [5]
    D.C. Hood and M.A. Finkelstein (1986) In: Handbook of Perception and Human Performance, V. 1, Sensory Processes and Perception (K.R. Boff, L. Kaufmann, and J.P. Thomas, eds) pp. 1–66, John Wiley and Sons, New York.Google Scholar
  12. [6]
    S. Hecht, S. Shlaer, and M.H. Pirenne (1942) J. Gen. Physiol. V. 25,pp, 819–840.Google Scholar
  13. [7]
    B. Sakitt (1972) J. Physiol. V. 223,pp, 131–150.Google Scholar
  14. [8]
    F. Rieke and D.A. Baylor (1988) Rev. Mod. Phys. V. 70, pp 1027–1036.Google Scholar
  15. [9]
    C. I. E. Proceedings (1951) V. 1, Sec. 4; V. 3, p. 37, Bureau Central de la C. I. E., ParisGoogle Scholar
  16. [10]
    A. Stockman, D.I.A. MacLeod, and N.E. Johnson (1993) J. Optical Soc. Amer. A V. 10, pp. 2491–2521.CrossRefGoogle Scholar
  17. [11]
    R.W. Rodieck (1965) Vision Res. V. 5, pp. 583–601.CrossRefGoogle Scholar
  18. [12]
    L.J. Croner and E. Kaplan (1995) Vision Res. V. 35, pp. 7–24.CrossRefGoogle Scholar
  19. [13]
    T. Wachtler, C. Wehrhahn, and B.B. Lee (1996) J. Comput. Neurosci. V. 3, pp. 73–82.CrossRefGoogle Scholar
  20. [14]
    D.M. Dacey (2000) Annu. Rev. Neurosci. V. 23, pp. 743–775.CrossRefGoogle Scholar
  21. [15]
    M. Watanabe and R.W. Rodieck (1989) J. Comp. Neurol. V. 289, pp. 434–454CrossRefGoogle Scholar
  22. M. Watanabe and R.W. Rodieck, 1989. Reprinted by permission of Wiley-Liss, Inc., a subsidiary of John Wiley and Sons, Inc..Google Scholar
  23. [16]
    E. Kaplan and R.M. Shapley (1986) Proc. Natl. Acad. Sci. U.S.A. V. 83, pp. 2755–2757.CrossRefGoogle Scholar
  24. [17]
    H.G. Barlow (1961) In: Sensory Communication (W.A. Rosenblith, ed.), MIT Press, Cambridge, MA.Google Scholar
  25. [18]
    M.V. Srinivasan, S.B. Laughlin, and A. Dubs (1982) Proc. R. Soc. Lond. B Biol. Sci. V. 216, pp. 427–459.Google Scholar
  26. [19]
    G. Buchsbaum and A. Gottschalk (1983) Proc. R. Soc. Lond. B Biol. Sci. V. 220, pp. 89–113.CrossRefGoogle Scholar
  27. [20]
    J.J. Atick and A.N. Redlich (1990) Neural Computation V. 2, pp. 308320.Google Scholar
  28. [21]
    R. Linsker (1990) Annu. Rev. Neurosci. V. 13, pp. 257–281.CrossRefGoogle Scholar
  29. [22]
    M.J. Berry, D.K. Warland, and M. Meister (1997) Proc. Natl. Acad. Sci. U.S.A. V. 94, pp. 5411–5416.CrossRefGoogle Scholar
  30. [23]
    M. Meister, L. Lagnado, and D.A. Baylor (1995) Science V. 270, pp. 1207–1210.CrossRefGoogle Scholar
  31. [24]
    E.J. Chichilnisky and D.A. Baylor (1999) Soc. Neurosci. Abstr. V. 25, p. 1042.Google Scholar
  32. [25]
    A.K. Sestokas, S. Lehmkuhle, and K.E. Kratz (1991) Int. J. Neurosci. V. 60, pp. 59–64.CrossRefGoogle Scholar
  33. [26]
    D.H. Perkel and T.H. Bullock (1968) Neurosciences Research Program Bull. V. 6, pp. 221–348.Google Scholar
  34. [27]
    P.C. Murphy, S.G. Duckett, and A.M. Sillito (1999) Science V. 286, pp. 1552–1554.CrossRefGoogle Scholar
  35. [28]
    E.M. Callaway (1998) Annu. Rev. Neurosci. V. 21, pp. 47–74.CrossRefGoogle Scholar
  36. [29]
    D.H. Hubel and T.N. Wiesel (1959) J. Physiol. V. 148, pp. 574–591.Google Scholar
  37. [30]
    M.S. Livingstone and D.H. Hubel (1988) Science V. 240, pp. 740–749.CrossRefGoogle Scholar
  38. [31]
    P.H. Schiller and N.K. Logothetis (1990) Trends Neurosci. V. 13, pp. 392–398.CrossRefGoogle Scholar
  39. [32]
    W.H. Merigan and J.H. Maunsell (1993) Annu. Rev. Neurosci. V. 16, pp. 369–402.CrossRefGoogle Scholar
  40. [33]
    T.D. Albright and G.R. Stoner (1995) Proc. Natl. Acad. Sci. U.S.A. V. 92, pp. 2433–2440.CrossRefGoogle Scholar
  41. [34]
    L.J. Croner and T.D. Albright (1999) Neuron V. 24, pp. 777–789.CrossRefGoogle Scholar
  42. [35]
    L.G. Ungerleider and J.V. Haxby (1994) Curr. Opin. Neurobiol. V. 4, pp. 157–165.CrossRefGoogle Scholar
  43. [36]
    M.W. Pettet and C.D. Gilbert (1992) Proc. Natl. Acad. Sci. U.S.A. V. 89, pp. 8366–8370.CrossRefGoogle Scholar
  44. [37]
    J. Allman, F. Miezin, and E. McGuinness (1985) Annu. Rev. Neurosci. V. 8, pp. 407–430.CrossRefGoogle Scholar
  45. [38]
    G.R. Stoner and T.D. Albright (1992) Nature V. 358, pp. 412–414.CrossRefGoogle Scholar
  46. [39]
    L.J. Croner and T.D. Albright (1999) J. Neurosci, V. 19, pp. 3935–3951.Google Scholar
  47. [40]
    K. Zipser, V.A. Lamme, and P.H. Schiller (1996) J. Neurosci. V. 16, pp. 7376–7389.Google Scholar
  48. [41]
    R. Desimone and J. Duncan (1995) Annu. Rev. Neurosci. V. 18, pp. 193222.Google Scholar
  49. [42]
    J.H. Reynolds, L. Chelazzi L, and R. Desimone (1999) J. Neurosci. V. 19, pp. 1736–1753.Google Scholar
  50. [43]
    W.T. Newsome, K.H. Britten, and J.A. Movshon (1989) Nature V. 341, pp. 52–54.CrossRefGoogle Scholar
  51. [44]
    T. Wachtler, T.J. Sejnowski, and T.D. Albright (1999) Soc. Neurosci. Abstr. V. 25, p. 4.Google Scholar
  52. [45]
    ) Neuron V. 24, pp. 7–125.Google Scholar
  53. [46]
    C. Koch and I. Segev, eds. (1989) Methods in neural modeling: from ions to networks, MIT Press, Cambridge.Google Scholar
  54. [47]
    T. McKenna, J. Davis, S.F. Zornetzer, eds (1992) Single neuron computation, Academic Press, Boston.zbMATHGoogle Scholar
  55. [48]
    C. Koch (1999) Biophysics of computation: information processing in single neurons, Oxford University Press, New York.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Lisa J. Croner
    • 1
  • Thomas Wachtler
    • 2
    • 3
  1. 1.The Salk Institute for Biological StudiesLa JollaUSA
  2. 2.The Sloan Center for Theoretical Neuroscience at The Salk Institute for Biological StudiesLa JollaUSA
  3. 3.Institute for Biology III, Neurobiology & BiophysicsUniversity of FreiburgFreiburgGermany

Personalised recommendations