On Convex Lower Level Problems in Generalized Semi-Infinite Optimization

  • Jan-J. Rückmann
  • Oliver Stein
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 57)


We give an introduction to the derivation of topological and first order properties for generalized semi-infinite optimization problems. We focus our attention on the case of convex lower level problems where the main ideas of the proofs can be illuminated without the technicalities that are necessary for the treatment of the general non-convex case, and where we can obtain stronger results.

After the description of the local topology of the feasible set around a feasible boundary point we derive approximations for the first order tangent cones to the feasible set and formulate appropriate constraint qualifications of Mangasarian-Fromovitz and Abadie type. Based upon these results we show that the first order optimality conditions given by Rückmann and Stein ([23]) for the case of linear lower level problems also hold in the jointly convex case. Moreover we prove that the set of lower level Kuhn-Tucker multipliers corresponding to a local minimizer has to be a singleton when the defining functions are in general position.


Tangent Cone Constraint Qualification Level Problem Lower Level Problem Order Optimality Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Th. Bröcker and L. Lander. Differentiable Germs and Catastrophes, London Mathematics Lecture Notes Serie 17, Cambridge University Press, 1975.zbMATHCrossRefGoogle Scholar
  2. [2]
    E.W. Cheney. Introduction to Approximation Theory, McGraw-Hill, 1966.zbMATHGoogle Scholar
  3. [3]
    T.J. Graettinger and B.H. Krogh. The acceleration radius: a global per formance measure for robotic manipulators, IEEE Journal of Robotics and Automation, 4:60–69, 1988.CrossRefGoogle Scholar
  4. [4]
    M.A. Goberna and M.A. Lopez. Linear Semi-Infinite Optimization, Wiley, 1998.zbMATHGoogle Scholar
  5. [5]
    E.G. Gol’stein. Theory of Convex Programming, Translations of Mathe matical Monographs, Vol. 36, American Mathematical Society, 1972.Google Scholar
  6. [6]
    R. Hettich and K.O. Kortanek. Semi-infinite programming: theory, meth ods, and applications, SIAM Review, 35:380–429, 1993.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    R. Hettich and G. Still. Second order optimality conditions for generalized semi-infinite programming problems, Optimization, 34:195–211, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    R. Hettich and P. Zencke. Numerische Methoden der Approximation und semi-infiniten Optimierung, Teubner, Stuttgart, 1982.zbMATHGoogle Scholar
  9. [9]
    W.W. Hogan. Directional derivatives for extremal value functions with ap plications to the completely convex case, Operations Research, 21:188–209, 1973.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    H.Th. Jongen, J.-J. Rückmann, and O. Stein. Disjunctive optimization: critical point theory, Journal of Optimization Theory and Applications, 93:321–336, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    H.Th. Jongen, J.-J. Rückmann, and O. Stein. Generalized semi-infinite optimization: a first order optimality condition and examples, Mathematical Programming, 83:145–158, 1998.MathSciNetzbMATHGoogle Scholar
  12. [12]
    H.Th. Jongen and O. Stein. On generic one-parametric semi-infinite opti mization, SI AM Journal on Optimization, 7:1103–1137, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    A. Kaplan and R. Tichatschke. On a class of terminal variational prob lems. In J. Guddat, H.Th. Jongen, F. Nozicka, G. Still, F. Twilt, editors, Parametric Optimization and Related Topics IV, pages 185–199, Peter Lang, Frankfurt a.M., 1997.Google Scholar
  14. [14]
    W. Krabs. On time-minimal heating or cooling of a ball, Numerical Meth ods of Approximation Theory, 8:121–131, 1987.MathSciNetGoogle Scholar
  15. [15]
    J. Kyparisis. On uniqueness of Kuhn-Tucker multipliers in nonlinear pro gramming, Mathematical Programming, 32:242–246, 1985.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    R-J. Laurent. Approximation et Optimisation, Hermann, Paris, 1972.zbMATHGoogle Scholar
  17. [17]
    E. Levitin. Perturbation Theory in Mathematical Programming, Wiley, 1994.zbMATHGoogle Scholar
  18. [18]
    V.H. Nguyen and J.J. Strodiot. Computing a global optimal solution to a design centering problem, Mathematical Programming, 53:111–123, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    E. Polak. An implementable algorithm for the optimal design centering, tolerancing and tuning problem, Journal of Optimization Theory and Appli cations, 37:45–67, 1982.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    R. Reemtsen and J.-J. Rückmann (editors). Semi-Infinite Programming, Kluwer, 1998.zbMATHGoogle Scholar
  21. [21]
    J.-J. Rückmann and A. Shapiro. First-order optimality conditions in gen eralized semi-infinite programming, Journal of Optimization Theory and Applications, 101:677–691, 1999.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    J.-J. Rückmann and A. Shapiro. Second-order optimality conditions in generalized semi-infinite programming, submitted.Google Scholar
  23. [23]
    J.-J. Rückmann and O. Stein. On linear and linearized generalized semi infinite optimization problems, Annals of Operations Research, to appear.Google Scholar
  24. [24]
    O. Stein. Trap-doors in the solution set of semi-infinite optimization problems. In P. Gritzmann, R. Horst, E. Sachs, R. Tichatschke, editors, Recent Advances in Optimization, pages 348–355, Springer, 1997.CrossRefGoogle Scholar
  25. [25]
    O. Stein. The Reduction Ansatz in absence of lower semi-continuity, in J. Guddat, R. Hirabayashi, H. Th. Jongen, F. Twilt, editors, Parametric Opti mization and Related Topics V, pages 165–178, Peter Lang, Frankfurt a.M., 2000.Google Scholar
  26. [26]
    O. Stein. On level sets of marginal functions, Optimization, 48:43–67, 2000.MathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    O. Stein. The feasible set in generalized semi-infinite programming. In M. Lassonde, editor, Approximation, Optimization and Mathematical Eco nomics, pages 309–327, Physica-Verlag, Heidelberg, 2001.CrossRefGoogle Scholar
  28. [28]
    O. Stein. First order optimality conditions for degenerate index sets in gen eralized semi-infinite programming, Mathematics of Operations Research, to appear.Google Scholar
  29. [29]
    O. Stein and G. Still. On optimality conditions for generalized semi infinite programming problems, Journal of Optimization Theory and Ap plications, 104:443–458, 2000.MathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    G.-W. Weber. Generalized Semi-Infinite Optimization and Related Topics, Habilitation Thesis, Darmstadt University of Technology, 1999.Google Scholar
  31. [31]
    D.J. White. Fundamentals of Decision Theory, North Holland, 1976.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Jan-J. Rückmann
    • 1
  • Oliver Stein
    • 2
  1. 1.Institut für MathematikTechnische Universität IlmenauIlmenauGermany
  2. 2.Lehrstuhl C für MathematikRWTH AachenAachenGermany

Personalised recommendations