Hypoxia pp 377-399 | Cite as

Interval hypoxic training

  • Luciano Bernardi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 502)


Interval hypoxic training (IHT) is a technique developed in the former Soviet Union, that consists of repeated exposures to 5–7 minutes of steady or progressive hypoxia, interrupted by equal periods of recovery. It has been proposed for training in sports, to acclimatize to high altitude, and to treat a variety of clinical conditions, spanning from coronary heart disease to Cesarean delivery. Some of these results may originate by the different effects of continuous vs. intermittent hypoxia (IH), which can be obtained by manipulating the repetition rate, the duration and the intensity of the hypoxic stimulus. The present article will attempt to examine some of the effects of IH, and, whenever possible, compare them to those of typical IHT. IH can modify oxygen transport and energy utilization, alter respiratory and blood pressure control mechanisms, induce permanent modifications in the cardiovascular system. IHT increases the hypoxic ventilatory response, increase red blood cell count and increase aerobic capacity. Some of these effects might be potentially beneficial in specific physiologic or pathologic conditions. At this stage, this technique appears interesting for its possible applications, but still largely to be explored for its mechanisms, potentials and limitations.


intermittent hypoxia altitude blood pressure heart rate variability chemoreceptors ventilation preconditioning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adiiatulin AI, Piliavskaya AN, Pilyavsky BG, and Takchuk EN. Interval hypoxic training in planned abdominal deliery 1. effects on epinephrine and glucose levels in blood plasma before and after surgery. Hyp Med J 4: 23–25, 1996.Google Scholar
  2. 2.
    . Adiiatulin AI, Piliavskaia AN, Takchuk EN, and Guliaeva NV. Various mechanisms of protective action of interval hypoxic training during preparation for abdominal delivery. Patol Fiziol Eksp Ter 3: 26–29, 1997.PubMedGoogle Scholar
  3. 3.
    Banai S, Shweiki D, Pinson A, Chandra M, Lazarovici G, and Keshet E. Upregulation of vascular endothelial growth factor expression induced by myocardial ischaemia: implications for coronary angiogenesis. Cardiovasc Res 8: 1176–1179, 1994.CrossRefGoogle Scholar
  4. 4.
    Bao G, Metreveli N, Li R, Taylor A, and Fletcher EC. Blood pressure response to chronic episodic hypoxia: role of the sympathetic nerous system. J Appl Physiol 83: 95–101, 1997.PubMedGoogle Scholar
  5. 5.
    Belkina LM, Budanova OP, Tkatchouk EN, Saltykova VA, Shimkovich MV, Ehrenbourg IV, and Meerson FZ. The antiarrhythmic effect of adaptation to normobaric hypoxia in local ischemia and reperfusion of the myocardium. Hyp Med J 1: 15–17, 1995.Google Scholar
  6. 6.
    Benoit H, Germain M, Barthelemy JC, Denis C, Castells J, Dormois D, Lacour JR, and Geyssant A. Pre-acclimatization to high altitude using exercise with normobaric hypoxic gas mixtures. Int J Sports Med 13: S213-S216, 1992.PubMedCrossRefGoogle Scholar
  7. 7.
    Bernardi L, Passino C, Serebrovskaya Z, Serebrovskaya T, and Appenzeller O. Cardiovascular adaptations to progressive hypoxia: effect of interval hypoxic training. Eur Heart 722: 879–886, 2001.CrossRefGoogle Scholar
  8. 8.
    Bonfichi M, Bernardi L, Malcovati L, Balduini A, Passino C, Gamboa J, Gamboa A, Vargas M, Appenzeller O, Roach R, and Bernasconi C. Effects of acute normoxia and hypoxia on Erythropoietin production in altitude Andean natives with polycythemia. High Alt Med Biol 2: 88, 2001 (abstract)Google Scholar
  9. 9.
    Burtscher M, Nachbauer W, Baumgartl P, and Philadelphy M. Benefits ot training at moderate altitude versus sea level training in amateur runners. Eur J Appl Physiol 74: 558–563, 1996.CrossRefGoogle Scholar
  10. 10.
    Burtscher M, Tsvetkova AM, Tkatchouk EN, Brauchle G, Mitterbauer G, Gulyaeva NV and Kofler W. Beneficial effects of short term hypoxia. In: Roach RC, Wagner PD, Hackett PH. Hypoxia into the next millennium. Advances in experimental medicine and biology 1999;474:371–72.Google Scholar
  11. 11.
    Burtscher M, Pachinger O, Ehrenbourg I, Schobersberger W, Mitterbauer G, Tkatchouk EN, Bleimfeldner M, and Püringer R. Normobaric interval hypoxia increases exercise tolerance in patients with CAD. High Alt Med Biol 2: 106, 2001 (abstract)Google Scholar
  12. 12.
    Cao KY, Zwillich CW, Berthon-Jones M, and Sullivan CE. Increased normoxic ventilation induced by repetitive hypoxia in conscious dogs. J Appl Physiol 73: 2083–2088, 1992.PubMedGoogle Scholar
  13. 13.
    Casas M, Casas H, Pages T, Rama R, Ricart A, Ventura JL, Ibanez J, Rodriguez FA, and Viscor G. Intermittent hypobaric hypoxia induces altitude acclimation and improves the lactate threshold. Aviat Space Environ Med 71: 125–130, 2000.PubMedGoogle Scholar
  14. 14.
    Das DK, Prasad MR, Lu D, and Jones RM. Preconditioning of heart by repeated stunning: adaptive modification of antioxidative defense system. Cell Mol Biol 38: 739–749, 1992.PubMedGoogle Scholar
  15. 15.
    Desplanches D, Hoppeler H, Linossier MT, Denis C, Claassen H, Dormois D, Lacour JR, and Geyssant A. Effects of training in normoxia and normobaric hypoxia on human muscle ultrastructure. Pflugers Arch 425: 263–267, 1993.PubMedCrossRefGoogle Scholar
  16. 16.
    Eckardt KU, Butellier U, Kurtz A, Schopen M, Koller EA, and Bauer C. Rate of erythropoietin formation in humans in reponse to acute hypobaric hypoxia. J Appl Physiol 66: 1785–1788, 1989.PubMedGoogle Scholar
  17. 17.
    Eckardt KU, Dittmer J, Neumann R, Bauer C, and Kurtz A. Decline of erythropoietin formation at continuous hypoxia is not due to feedback inhibition. Am J Physiol 258: F1432-F1437, 1990.PubMedGoogle Scholar
  18. 18.
    Ehrehbourg IV, and Gorbatchenkov AA. Interval hypoxic training of patients with coronary heart disease. Hyp Med J 1: 14–16, 1993.Google Scholar
  19. 19.
    Elander A, Idstrom JP, Holm S, Schersten T, and Bylund-Fellenius AC. Metabolic adaptation to reduced muscle blood flow. II. Mechanisms and beneficial effects. Am J Physiol 249: E70–E76, 1985.PubMedGoogle Scholar
  20. 20.
    Erdman J, Sun KT, Masar P, and Niederhauser H. Effects of exposure to altitude on men with coronary artery disease and impaired left ventricular function. Am J Cardiol 81: 266–270, 1998.CrossRefGoogle Scholar
  21. 21.
    Filler J, Smith AA, Stone S, and Dancis J. Respiratory control in familial dysautonomia. J Pediat 66: 509–516, 1965.PubMedCrossRefGoogle Scholar
  22. 22.
    Fletcher EC, Lesske J, Behm R, Miller CC 3d, Stauss H, and Unger T. Carotid chemoreceptors, systemic blood pressure, and chronic episodic hypoxia mimicking sleep apnea. J Appl Physiol 72: 1978–1984, 1992.PubMedGoogle Scholar
  23. 23.
    Fletcher EC, Lesske J, Qian W, Miller CC 3d, and Unger T. Repetitive, episodic hypoxia causes diurnal elevation of blood pressure in rats. Hypertension 19: 555–561, 1992.PubMedCrossRefGoogle Scholar
  24. 24.
    Fletcher EC, and Bao G. Effect of episodic eucapnit and hypercapnic hypoxia on systemic blood pressure in hypertension-prone rats. J Appl Physiol 81: 2088–94, 1996.PubMedGoogle Scholar
  25. 25.
    Fliss H, Ehrenburg IV, Gulyaeva NV, Tkatchouk EN. Effects of in vivo hypoxic preconditioning on transcription factors and protein kinase C activity in rat heart. XIII World Congress of Cardiology, Rio de Janeiro, Brazil, 26–30 April 1998.Google Scholar
  26. 26.
    Gasbarrini A, Colantoni A, Di Campli C, De Notariis S, Masetti M, Lovine E, Mazziotti A, Massari I, Gasbarrini G, Pola P, and Bernardi M. Intermittent anoxia reduces oxygen free radicals formation during reoxygenation in rat hepatocytes. Free Radic Biol Med 23: 1067–1072, 1997.PubMedCrossRefGoogle Scholar
  27. 27.
    Gibbs L, Bishop SP, Nesher R, Robinson WF, Berry AJ, and Kruger FA. The effect of intermittent hypoxia on rna synthesis in the isolated rat heart. J Mol Cell Cardiol 8: 419–429, 1976.CrossRefGoogle Scholar
  28. 28.
    Gorbachenkov AA, Tkachuk EN, Erenburg IV, Kondrykinskaia II, and Kotliarova LA. Hypoxic training in prevention and treatment. TerArkh 66: 28–32, 1994.Google Scholar
  29. 29.
    Gordon DJ, Ekelund LG, Karon JM, Probstfield JL, Rubenstein C, Sheffield LT, and Weissfeld L. Predictive value of the exercise tolerance test for mortality in North American men: the Lipid Research Clinics Mortality Follow-up Study. Circulation 74: 252–261, 1986.PubMedCrossRefGoogle Scholar
  30. 30.
    Green HJ, Sutton JR, Cymerman A, Young PM, and Houston CS. Operation Everest II: adaptations in human skeletal muscle. J Appl Physiol 66: 2454–2461, 1989.PubMedGoogle Scholar
  31. 31.
    Greenberg HE, Sica A, Batson D, and Scharf SM. Chronic intermittent hypoxia increases sympathetic responsiveness to hypoxia and hypercapnia. J Appl Physiol 86: 298–305, 1999.PubMedGoogle Scholar
  32. 32.
    Gulyaeva NV, and Tkatchouk EN. Effects of normobaric hypoxic training on immunoreactive erythropoietin and transferrin levels in blood serum of healthy volunteers. Hyp Med J 6: 13–17, 1998.Google Scholar
  33. 33.
    Gunga HC, Rocker L, Behn K, Hidebrandt W, Koralewski E, Rich I, Schobersberger W, and Kirsch K. Shift working in the Chilean Andes (>3600m) and its influence on erythropoietin and the low-pressure system. J Appl Physiol 81: 846–852, 1996.PubMedGoogle Scholar
  34. 34.
    Heistad DD, and Abboud FM. Circulatory adjustments to hypoxia. Circulation 61: 463–470, 1980.PubMedCrossRefGoogle Scholar
  35. 35.
    Henley WN, and Tucker A. Hypoxic moderation of systemic hypertension in the spontaneously hypertensive rat. Am J Physiol 252: R554–R561, 1987.PubMedGoogle Scholar
  36. 36.
    Hochachka PW, Stanley C, Merkt J, and Sumar-Kalinowski J. Metabolic meaning of elevated levels of oxidative enzymes in high altitude adapted animals: an interpretive hypothesis. Respir Physiol 52: 303–313, 1983.PubMedCrossRefGoogle Scholar
  37. 37.
    Holm J, Bjorntorp P, and Schersten T. Metabolic activity in human skeletal muscle. Effect of peripheral arterial insufficiency. Eur J Clin Invest 2: 321–325, 1972.PubMedCrossRefGoogle Scholar
  38. 38.
    Holm J, Bjorntorp P, and Schersten T. Metabolic activity in rat skeletal muscle. Effect of intermittent hypoxia. Eur J Clin Invest 3: 279–283, 1973.PubMedCrossRefGoogle Scholar
  39. 39.
    Hoppeler H, Kleinen E, Schlegel C, Claassen H, Howald H, Kayar SR, and Cerretelli P. Morphological adaptations of human skeletal muscle to chronic hypoxia. Int J Sports Med 11: S3–S9, 1990.PubMedCrossRefGoogle Scholar
  40. 40.
    Hoppeler H, and Desplanches D. Muscle structural modifications in hypoxia. Int J Sports Med 13: S166–S168, 1992.PubMedCrossRefGoogle Scholar
  41. 41.
    Hoshida S, Kuzuya T, Fuji H, Yamashita N, Oe H, Hori M, Suzuki K, Taniguchi N, and Tada M. Sublethal ischemia alters myocardial antioxidant activity in canine heart. Am J Physiol 264: H33-H39, 1993.PubMedGoogle Scholar
  42. 42.
    Houston C. Going Higher, 4th Ed. Seattle: The Mountaineers, 1998.Google Scholar
  43. 43.
    Houston CS. Hypoxic training: approaches to aclimatization. Newsletter of the International Society for Mountain Medicine 9: 11–13, 1999.Google Scholar
  44. 44.
    Irlbeck M, Iwai T, Lerner T, and Zimmer HG. Effects of angiotensin II receptor blockade on hypoxia-induced right ventricular hypertrophy in rats. J Mol Cell Cardiol 29: 2931–2939, 1997.PubMedCrossRefGoogle Scholar
  45. 45.
    Johnson M., Bernardi L, VonBargen Otto C, Johnson E, and Basnyat B. Sympatho-vagal imbalance during acute cardiovascular complications of high-altitude illness. High Alt Med Biol 2: 111, 2001 (abstract)Google Scholar
  46. 46.
    Katayama K, Sato Y, Morotome Y, Shima N, Ishida K, Mori S, and Miyamura M. Ventilatory chemosensitive adaptations to intermittent hypoxic exposure with endurance training and detraining. J Appl Physiol 86: 1805–1811, 1999.PubMedGoogle Scholar
  47. 47.
    Kikuchi Y, Okabe S, Tamura G, Hida W, Homma M, Shirato K, and Takishima T. Chemosensitivity and perception of dyspnea in patients with a history of near-fatal asthma. N Engl J Med 330: 1329–1334, 1994.PubMedCrossRefGoogle Scholar
  48. 48.
    Koistinen PO, Rusko H, Irjala K, Rajamaki A, Penttinen K, Sarparanta VP, Karpakka J, and Leppaluoto J. Epo, red cells, and serum transferrin receptor in continuous and intermittent hypoxia. Med Sci Sports Exerc 32: 800–804, 2000.PubMedCrossRefGoogle Scholar
  49. 49.
    Kraiczi H, Magga J, Sun XY, Ruskoaho H, Zhao X, and Hedner J. Hypoxic pressor response, cardiac size, and natriuretic peptides are modified by long-term intermittent hypoxia. J Appl Physiol 87: 2025–2031, 1999.PubMedGoogle Scholar
  50. 50.
    Kuwahira I, Kamiya U, Iwamoto T, Moue Y, Urano T, Ohta Y, and Gonzalez NC. Splenic contraction-induced reversible increase in hemoglobin concentration in intermittent hypoxia. J Appl Physiol 86: 181–187, 1999.PubMedGoogle Scholar
  51. 51.
    Lesske J, Fletcher EC, Bao G, and Unger T. Hypertension caused by chronic intermittent hypoxia—influence of chemoreceptors and sympathetic nervous system. J Hypertens 15: 1593–1603, 1997.PubMedCrossRefGoogle Scholar
  52. 52.
    Levine BD, Friedman DB, Engfred K, Hanel B, Kjaer M, Cliford PS, and Secher NH. The effect of normoxic or hypoxic hypobaric hypoxic endurance training on the hypoxic ventilatory response. Med Sci Sports Exerc 24: 769–775, 1992.PubMedGoogle Scholar
  53. 53.
    Levine BD, and Stray-Gundersen J. “Living high-training low”: Effect of moderate- altitude aclimatization with low-altitude training on performance. J Appl Physiol 83: 102–112, 1997.PubMedGoogle Scholar
  54. 54.
    Levy AP, Levy NS, Loscalzo J, Calderone A, Takahashi N, Yeo KT, Koren G, Colucci WS, and Goldberg MA. Regulation of vascular endothelial growth factor in cardiac myocytes. Circ Res 76: 758–766, 1995.PubMedCrossRefGoogle Scholar
  55. 55.
    Levy AP. A cellular paradigm for the failure to increase vascular endothelial growth factor in chronically hypoxic states. Coron Artery Dis 10: 427–430, 1999.PubMedCrossRefGoogle Scholar
  56. 56.
    Luks AM, VanMelik H, Batarse RR, Powell FL, Grant I, and West JB. Room oxygen enrichment improves sleep and subsequent day-time performance at high altitude. Respir Physiol 113: 247–258, 1998.PubMedCrossRefGoogle Scholar
  57. 57.
    Marcus ML, Eckberg DL, Braxmeier JL, and Abboud FM. Effects of intermittent pressure loading on the development of ventricular hypertrophy in the cat. Circ Res 40: 484–488, 1977.PubMedCrossRefGoogle Scholar
  58. 58.
    McEvoy RD, Popovic RM, Saunders NA, and White DP. Effects of sustained and repetitive isoapnic hypoxia on ventilation and genioglossal and diaphragmatic EMGs. J Appl Physiol 81: 866–875, 1996.PubMedGoogle Scholar
  59. 59.
    Meerson FZ, Ustinova EE, and Orlova EH. Prevention and elimination of heart arrhythmias by adaptation to intermittent high altitude hypoxia. Clin Cardiol 10: 783–789, 1987.PubMedCrossRefGoogle Scholar
  60. 60.
    Meerson FZ, Arkhipenko IV, Rozhitskaia II, Didenko VV, and Sazontova TG. Opposite effects on antioxidant enzymes of adaptation to continuous and intermittent hypoxia. Biull Eksp Biol Med 114: 14–15, 1992.PubMedGoogle Scholar
  61. 61.
    Michael JR, Kennedy TP, Buescher P, Farrukh I, Lodato R, Rock PC, Gottlieb J, Gurtner G, de la Monte SM, and Hutchins GM. Nitrendipine attenuates the pulmonary vascular remodeling and right ventricular hypertrophy caused by intermittent hypoxia in rats. Am Rev Respir Dis 133: 375–379, 1986.PubMedGoogle Scholar
  62. 62.
    Moore-Gillon JC, and Cameron IR. Right ventricular hypertrophy and polycythaemia in rats after intermittent exposure to hypoxia. Clin Sci 69: 595–599, 1985.PubMedGoogle Scholar
  63. 63.
    Nattie EE, and Doble EA. Threshold of intermittent hypoxia-induced right ventricular hypertrophy in the rat. Respir Physiol 56: 253–259, 1984.PubMedCrossRefGoogle Scholar
  64. 64.
    Obrezchikova MN, Kharchenko IB, Tarasova OS, and Koshelev VB. Intermittent hypoxic training slows down but does not prevent development of arterial hypertension in spontaneously hypertensie rats. Hypoxia Medical J 2: 3–7, 1991.Google Scholar
  65. 65.
    Piliavskaia AN, Adiiatulin AI, Tkachuk EN, and Gluiaeva NV. The role of free radical processes in the uterus—placenta—fetus system during adaptation to interval hypoxia. Patol Fiziol Eksp Ter 3: 24–26, 1997.PubMedGoogle Scholar
  66. 66.
    Powell FL, Milsom WK, and Mitchell GS. Time domains of the hypoxic ventilatory response. Respir Physiol 112: 123–34, 1998.PubMedCrossRefGoogle Scholar
  67. 67.
    Powell FL, and Garcia N. Physiological effects of intermittent hypoxia. High Altitude Med Biol I: 125–136, 2000.Google Scholar
  68. 68.
    Radzievskii PA. Use of hypoxic training in sports medicine. Vestn Ross Akad Med Nauk 5: 41–46, 1997.PubMedGoogle Scholar
  69. 69.
    Rakusan K, Ehrenburg IV, Gulayeva NV, and Tkatchouk EN. The effect of intermittent normobaric hypoxia on vascularozation of human myometrium. Microvasc Res 58: 200–203, 1999.PubMedCrossRefGoogle Scholar
  70. 70.
    Rodriguez FA, Casas H, Casas M, Pages T, Rama R, Ricart A, Ventura JL, Ibanez J, and Viscor G. Intermittent hypobaric hypoxia stimulates erythropoiesis and improves aerobic capacity. Med Sci Sports Exerc 31: 264–268, 1999.PubMedCrossRefGoogle Scholar
  71. 71.
    Schmidt W, and Eckardt KU, Hilgendorf A, Strauch S, and Bauer C. Effect of submaximal and maximal exercise under normoxic and hypoxic conditions on serum erythopoietin level. Int J Sports Med 12: 457–461, 1991.PubMedCrossRefGoogle Scholar
  72. 72.
    Serebrovskaia TV, Man’kovskaia IN, Lysenko GI, Swanson R, Belinskaia IV, Oberenko OA, and Daniliuk SV. A method for intermittent hypoxic exposures in the combined treatment of bronchial asthma patients. Lik Sprava 6: 104–108, 1998.PubMedGoogle Scholar
  73. 73.
    Schultz A, Lavie L, Hochberg I, Beyar R, Stone T, Skorecki K, Lavie P, Roguin A, and Levy AP. Interindividual heterogeneity in the hypoxic regulation of VEGF: significance for the development of the coronary artery collateral circulation. Circulation 100: 547–552, 1999.PubMedCrossRefGoogle Scholar
  74. 74.
    Seferynska I, Brookins J, Rice JC, and Fisher JW. Erythropoietin production in exhypoxic polycythemic mice. Am J Physiol 256: C925–C929, 1989.PubMedGoogle Scholar
  75. 75.
    Sica AL, Greenberg HE, Ruggiero DA, and Scharf SM. Chronic-intermittent hypoxia: a model of sympathetic activation in the rat. Respir Physiol 121: 173–184, 2000.PubMedCrossRefGoogle Scholar
  76. 76.
    Smith TF, and Hudgel DW. Decreased ventilation response to hypoxia in children with asthma. J Pediatrics 97: 736–741, 1980.CrossRefGoogle Scholar
  77. 77.
    Terrados N, Jansson E, Sylven C, and Kaijser L. Is hypoxia a stimulus for synthesis of oxidative enzymes and myoglobin? J Appl Physiol 68: 2369–2372, 1990.PubMedGoogle Scholar
  78. 78.
    Ward MP, Milledge JS, and West JB. High altitude medicine and physiology. 2nd ed. London: Chapman and Hall, 1995.Google Scholar
  79. 79.
    Weil JV, and Zwillich CW. Assessment of ventilatory response to hypoxia: methods and interpretation. Chest 70: 124–128, 1976.PubMedGoogle Scholar
  80. 80.
    Widimski J, Ostadal B, Urbanova D, Ressl J, Prozchazka J, and Pelouch V. Intermittent high altitude hypoxia. Chest 11: 383–389, 1980.CrossRefGoogle Scholar
  81. 81.
    Zhou X, Zhai X, and Ashraf M. Direct evidence that initial oxidative stress triggered by preconditioning contributes to second window of protection by endogenous antioxidant enzyme in myocytes. Circulation 93: 1177–1184, 1996.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Luciano Bernardi
    • 1
  1. 1.Clinica Medica 1Universita di Pavia - IRCCSPaviaItaly

Personalised recommendations