Advertisement

Hypoxia pp 169-187 | Cite as

Biology of erythropoietin

  • Wolfgang Jelkmann
  • Thomas Hellwig-Bürgel
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 502)

Abstract

Hypoxia induces tissue-specific gene products such as erythropoietin (EPO) and vascular endothelial growth factor (VEGF), which improve the peripheral O2 supply, and glucose transporters and glycolytic enzymes, which adapt cells to reduced O2 availability. EPO has been the fountainhead in research on pO2-dependent synthesis of proteins. The EPO gene enhancer (like the flanking DNA-elements of several other pO2-controlled genes) contains a consensus sequence (CGTG) that binds the trans-acting dimeric hypoxia-inducible factor 1 (HIF-1α/β). The α-subunit of HIF-1 is rapidly degraded by the proteasome under normoxic conditions, but it is stabilized on occurrence of hypoxia. HIF-1 DNA-binding is also increased by insulin, and by interleukin-1 and tumor necrosis factor. Thus, in some aspects there is synergy in the cellular responses to hypoxia, glucose deficiency and inflammation. In viewing clinical medicine recombinant human EPO (rHu-EPO) has become the mainstay of treatment for renal anemia. Endogenous EPO and rHu-EPO are similar except for minor differences in the pattern of their 4 carbohydrate chains. RHu-EPO is also administered to patients suffering from non-renal anemias, such as in autoimmune diseases or malignancies. The correction of anemia in patients with solid tumors is not merely considered a palliative intervention. Hypoxia promotes tumor growth. However, the benefits of the administration of rHu-EPO to tumor patients with respect to its positive effects on tumor oxygenation, tumor growth inhibition and support of chemo- and radiotherapy is still debatable ground.

Key words

hypoxia inducible factor HIF-1 recombinant human erythropoietin anemia tumor oxygenation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acker H. Mechanisms and meaning of cellular oxygen sensing in the organism. Respir Physiol 95: 1–10, 1994.PubMedCrossRefGoogle Scholar
  2. 2.
    Adamson J W and Eschbach J W. Treatment of the anemia of chronic renal failure with recombinant human erythropoietin. Annu Rev Med 41: 349–360, 1990.PubMedCrossRefGoogle Scholar
  3. 3.
    Allen D, Breen C, Yaqoob M, and Macdougall L. Inhibition of CFU-E colony formation in uremic patients with inflammatory disease: Role of IFN-gamma and TNF-alpha. J Investig Med 47: 204–210, 1999.PubMedGoogle Scholar
  4. 4.
    Barosi G. Inadequate erythropoietin response to anemia: definition and clinical relevance. Ann Hematol 68: 215–223, 1994.PubMedCrossRefGoogle Scholar
  5. 5.
    Barosi G, Marchetti M, and Liberato N L. Cost-effectiveness of recombinant human erythropoietin in the prevention of chemotherapy-induced anaemia. Br J Cancer 78: 781–787, 1998.PubMedCrossRefGoogle Scholar
  6. 6.
    Beguin Y, Loo M, R’Zik S, Sautois B, Lejeune F, Rorive G, and Fillet G. Early prediction of response to recombinant human erythropoietin in patients with the anemia of renal failure by serum transferrin receptor and fibrinogen. Blood 82: 2010–2016, 1993.PubMedGoogle Scholar
  7. 7.
    Besarab A, Bolton W K, Browne J K, Egrie J C, Nissenson A R, Okamoto D M, Schwab S J, and Goodkin D A. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N Engl J Med 339: 584–590, 1998.PubMedCrossRefGoogle Scholar
  8. 8.
    Brecher M E, Goodnough L T, and Monk T. Where does preoperative erythropoietin therapy count? A mathematical perspective. Transfusion 39: 392–395, 1999.PubMedCrossRefGoogle Scholar
  9. 9.
    Bunn H F and Poyton R O. Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 76: 839–885, 1996.PubMedGoogle Scholar
  10. 10.
    Canadian Orthopedic Perioperative Erythropoietin Study Group. Effectiveness of perioperative recombinant human erythropoietin in elective hip replacement. Lancet 342: 1227–1232, 1993.CrossRefGoogle Scholar
  11. 11.
    Cazzola M and Beguin Y. New tools for clinical evaluation of erythron function in man. Br J Haematol 80: 278–284, 1992.PubMedCrossRefGoogle Scholar
  12. 12.
    Cazzola M, Messinger D, Battistel V, Bron D, Cimino R, Enller Z L, Essers U, Greil R, Grossi A, Jager G, LeMevel A, Najman A, Silingardi V, Spriano M, van Hoof A, and Ehmer B. Recombinant human erythropoietin in the anemia associated with multiple myeloma or non-Hodgkin’s lymphoma: dose finding and identification of predictors of response. Blood 86: 4446–4453, 1995.PubMedGoogle Scholar
  13. 13.
    Chandel N S, Maltepe E, Goldwasser E, Mathieu C E, Simon M C, and Schumacker P T. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci U S A 95: 11715–11720, 1998.PubMedCrossRefGoogle Scholar
  14. 14.
    Dunst J. Hemoglobin level and anemia in radiation oncology: prognostic impact and therapeutic implications. Semin Oncol 27: 4–8, 2000.PubMedGoogle Scholar
  15. 15.
    Dusenbery K E, McGuire W A, Holt P J, Carson L F, Fowler J M, Twiggs L B, and Potish R A. Erythropoietin increases hemoglobin during radiation therapy for cervical cancer. Int J Radiat Oncol Biol Phys 29: 1079–1084, 1994.PubMedCrossRefGoogle Scholar
  16. 16.
    Fandrey J and Genius J. Reactive oxygen species asf regulators of oxygen dependent gene expression. Adv Exp Med Biol 475: 153–159, 2000.PubMedCrossRefGoogle Scholar
  17. 17.
    Fandrey J. Hypoxia-inducible gene expression. Respir Physiol 101: 1–10, 1995.PubMedCrossRefGoogle Scholar
  18. 18.
    Fandrey J and Bunn H F. In vivo and in vitro regulation of erythropoietin mRNA: measurement by competitive polymerase chain reaction. Blood 81: 617–623, 1993.PubMedGoogle Scholar
  19. 19.
    Fandrey J, Frede S, and Jelkmann W. Role of hydrogen peroxide in hypoxia-induced erythropoietin production. Biochem J 303: 507–510, 1994.PubMedGoogle Scholar
  20. 20.
    Fandrey J, Huwiler A, Frede S, Pfeilschifter J, and Jelkmann W. Distinct signaling pathways mediate phorbol-ester-induced and cytokine-induced inhibition of erythropoietin gene expression. Eur J Biochem 226: 335–340, 1994.PubMedCrossRefGoogle Scholar
  21. 21.
    Faquin W C, Schneider T J, and Goldberg M A. Effect of inflammatory cytokines on hypoxia-induced erythropoietin production. Blood 79: 1987–1994, 1992.PubMedGoogle Scholar
  22. 22.
    Feldser D, Agani F, Iyer N V, Pak B, Ferreira G, and Semenza G L. Reciprocal positive regulation of hypoxia-inducible factor 1 alpha and insulin-like growth factor 2. Cancer Res 59: 3915–3918, 1999.PubMedGoogle Scholar
  23. 23.
    Ferrara N and Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev 18: 4–25, 1997.PubMedCrossRefGoogle Scholar
  24. 24.
    Goodnough L T, Monk T G, and Andriole G L. Erythropoietin therapy. N Engl J Med 336: 933–938, 1997.PubMedCrossRefGoogle Scholar
  25. 25.
    Gorlach A, Holtermann G, Jelkmann W, Hancock J T, Jones S A, Jones O T, and Acker H. Photometric characteristics of haem proteins in erythropoietin-producing hepatoma cells (HepG2). Biochem J 290: 771–776, 1993.PubMedGoogle Scholar
  26. 26.
    Graeber T G, Osmanian C, Jacks T, Housman D E, Koch C J, Lowe S W, and Giaccia A J. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379: 88–91, 1996.PubMedCrossRefGoogle Scholar
  27. 27.
    Green S L and Giaccia A J. Tumor hypoxia and the cell cycle: implications for malignant progression and response to therapy. Cancer J Sci Am 4: 218–223, 1998.PubMedGoogle Scholar
  28. 28.
    Hellwig-Burgel T., Rutkowski K, Metzen E, Fandrey J, and Jelkmann W. Interleukin-1 beta and tumor necrosis factor-alpha stimulate DNA binding of hypoxia-inducible factor-1. Blood 94: 1561–1567, 1999.PubMedGoogle Scholar
  29. 29.
    Horiguchi H, Kayama F, Oguma E, Willmore W G, Hradecky P, and Bunn H F. Cadmium and platinum suppession of erythropoietin production in cell culture: clinical implications. Blood 96: 3143–3747, 2000.Google Scholar
  30. 30.
    Horl W H, Cavill I, MacDougall I C, Schaefer R M, and Sunder-Plassmann G. How to diagnose and correct iron deficiency during r-huEPO therapy-a consensus report. Nephrol Dial Transplant 11: 246–250, 1996.PubMedCrossRefGoogle Scholar
  31. 31.
    Imagawa S, Yamamoto M, Ueda M, and Miura Y. Erythropoietin gene expression by hydrogen peroxide. Int J Hematol 64: 189–195, 1996.PubMedCrossRefGoogle Scholar
  32. 32.
    Ishimitsu T, Tsukada H, Ogawa Y, Numabe A, and Yagi S. Genetic predisposition to hypertension facilitates blood pressure elevation in hemodialysis patients treated with erythropoietin. Am J Med 94: 401–406, 1993.PubMedCrossRefGoogle Scholar
  33. 33.
    Jelkmann W. Erythropoietin: structure, control of production, and function. Physiol Rev 72: 449–489, 1992.PubMedGoogle Scholar
  34. 34.
    Jelkmann W. Proinflammatory cytokines lowering erythropoietin production. J Interferon Cytokine Res 18: 555–559, 1998.PubMedCrossRefGoogle Scholar
  35. 35.
    Jelkmann W, Pagel H, Wolff M, and Fandrey J. Monokines inhibiting erythropoietin production in human hepatoma cultures and in isolated perfused rat kidneys. Life Sci 50: 301–308, 1992.PubMedCrossRefGoogle Scholar
  36. 36.
    Jelkmann W and Wolff M. [Determination of erythropoietin activity in serum. Methods, indications and interpretation of the data]. Dtsch Med Wochenschr 116: 230–234, 1991.PubMedGoogle Scholar
  37. 37.
    Jiang B H, Semenza G L, Bauer C, and Marti H H. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 271: C1172–C1180, 1996.PubMedGoogle Scholar
  38. 38.
    Kelleher D K, Mattheinsen U, Thews O, and Vaupel P. Blood flow, oxygenation, and bioenergetic status of tumors after erythropoietin treatment in normal and anemic rats. Cancer Res 56: 4728–4734, 1996.PubMedGoogle Scholar
  39. 39.
    Klingmuller U. The role of tyrosine phosphorylation in proliferation and maturation of erythroid progenitor cells-signals emanating from the erythropoietin receptor. Eur J Biochem 249: 637–647, 1997.PubMedCrossRefGoogle Scholar
  40. 40.
    Koury M J and Bondurant M C. The molecular mechanism of erythropoietin action. Eur J Biochem 210: 649–663, 1992.PubMedCrossRefGoogle Scholar
  41. 41.
    Koury S T, Koury M J, Bondurant M C, Caro J, and Graber S E. Quantitation of erythropoietin-producing cells in kidneys of mice by in situ hybridization: correlation with hematocrit, renal erythropoietin mRNA, and serum erythropoietin concentration. Blood 74: 645–651, 1989.PubMedGoogle Scholar
  42. 42.
    Lavey R S and Dempsey W H. Erythropoietin increases hemoglobin in cancer patients during radiation therapy. Int J Radiat Oncol Biol Phys 27: 1147–1152, 1993.PubMedCrossRefGoogle Scholar
  43. 43.
    MacDougall I C. Novel erythropoiesis stimulating protein. Semin Nephrol 20: 375–381, 2000.PubMedGoogle Scholar
  44. 44.
    Marti H H, Wenger R H, Rivas L A, Straumann U, Digicaylioglu M, Henn V, Yonekawa Y, Bauer C, and Gassmann M. Erythropoietin gene expression in human, monkey and murine brain. Eur J Neurosci 8: 666–676, 1996.PubMedCrossRefGoogle Scholar
  45. 45.
    Maxwell P H, Ferguson D J, Nicholls L G, Iredale J P, Pugh C W, Johnson M H, and Ratcliffe P J. Sites of erythropoietin production. Kidney Int 51: 393–401, 1997.PubMedCrossRefGoogle Scholar
  46. 46.
    Maxwell P H, Osmond M K, Pugh C W, Heryet A, Nicholls L G, Tan C C, Doe B G, Ferguson D J, Johnson M H, and Ratcliffe P J. Identification of the renal erythropoietin-producing cells using transgenic mice. Kidney Int 44: 1149–1162, 1993.PubMedCrossRefGoogle Scholar
  47. 47.
    Maxwell P H, Wiesener M S, Chang G W, Clifford S C, Vaux E C, Cockman M E, Wykoff C C, Pugh C W, Maher E R, and Ratcliffe P J. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399: 271–275, 1999.PubMedCrossRefGoogle Scholar
  48. 48.
    Means RT and Krantz S. Progress in understanding the pathogenesis of the anemia of chronic disease. Blood 80: 1639–1647, 1992.PubMedGoogle Scholar
  49. 49.
    Miller C B, Jones R J, Piantadosi S, Abeloff M D, and Spivak J L. Decreased erythropoietin response in patients with the anemia of cancer. N EnglJ Med 322: 1689–1692, 1990.CrossRefGoogle Scholar
  50. 50.
    Pagel H, Jelkmann W, and Weiss C. O2-supply to the kidneys and the production of erythropoietin. Respir Physiol 77: 111–117, 1989.PubMedCrossRefGoogle Scholar
  51. 51.
    Ratcliffe P J, Ebert B L, Firth J D, Gleadle J M, Maxwell P H, Nagao M, O’Rourke J F, Pugh C W, and Wood S M. Oxygen regulated gene expression: erythropoietin as a model system. Kidney Int 51: 514–526, 1997.PubMedCrossRefGoogle Scholar
  52. 52.
    Ruschitzka F T, Wenger R H, Stallmach T, Quaschning T, de Wit C, Wagner K, Kelm M, Noll G, Rülicke T, Shaw S, Lindberg R L P, Rodenwald B, Lutz H, Bauer C, Lüscher T F, and Gassmann M. Nitric oxide prevents cardiovascular disease and determines survival in Polyglobulic mice overexpressing erythropoietin. Proc Natl Acad Sci USA 97: 11609–11613,2000.PubMedCrossRefGoogle Scholar
  53. 53.
    Sadamoto Y, Igase K, Sakanaka M, Sato K, Otsuka H, Sakaki S, Masuda S, and Sasaki R. Erythropoietin prevents place navigation disability and cortical infarction in rats with permanent occlusion of the middle cerebral artery. Biochem Biophys Res Commun 253: 26–32, 1998.PubMedCrossRefGoogle Scholar
  54. 54.
    Sakanaka M, Wen T C, Matsuda S, Masuda S, Morishita E, Nagao M, and Sasaki R. In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Natl Acad Sci USA 95: 4635–4640, 1998.PubMedCrossRefGoogle Scholar
  55. 55.
    Salceda S and Caro J. Hypoxia-inducible factor 1 alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 272: 22642–22647, 1997.PubMedCrossRefGoogle Scholar
  56. 56.
    Semenza G L. Regulation of erythropoietin production. New insights into molecular mechanisms of oxygen homeostasis. Hematol Oncol Clin North Am 8: 863–884, 1994.PubMedGoogle Scholar
  57. 57.
    Sowade O, Warnke H, Scigalla P, Sowade B, Franke W, Messinger D, and Gross J. Avoidance of allogeneic blood transfusions by treatment with epoetin beta (recombinant human erythropoietin) in patients undergoing open-heart surgery. Blood 89:411–418, 1997.PubMedGoogle Scholar
  58. 58.
    Sutherland R M. Tumor hypoxia and gene expression — implications for malignant progression and therapy. Acta Oncol 37: 567–574, 1998.PubMedCrossRefGoogle Scholar
  59. 59.
    Tabata M, Tarumota T, Ohmine K, Furukawa Y, Hatake K, Ozawa K, Hasegawa Y, Mukai H, Yamamoto M, and Imagawa S. Stimulation of GATA-2 as a mechanism of hydrogen peroxide suppression in hypoxia-induced erythropoietin gene expression. Journal of Cellular Physiology 186: 260–267, 2001.PubMedCrossRefGoogle Scholar
  60. 60.
    Tan C C, Eckardt K U, Firth J D, and Ratcliffe P J. Feedback modulation of renal and hepatic erythropoietin mRNA in response to graded anemia and hypoxia. Am J Physiol 263:F474-F481, 1992.PubMedGoogle Scholar
  61. 61.
    Teicher B A. Physiologic mechanisms of therapeutic resistance. Blood flow and hypoxia. Hematol Oncol Clin North Am 9: 475–506, 1995.PubMedGoogle Scholar
  62. 62.
    Teicher B A, Holden S A, al-Achi A, and Herman T S. Classification of antineoplastic treatments by their differential toxicity toward putative oxygenated and hypoxic tumor subpopulations in vivo in the FSaIIC murine fibrosarcoma. Cancer Res 50: 3339–3344, 1990.PubMedGoogle Scholar
  63. 63.
    The US recombinant human erythropoietin predialysis study group. Double-blind, placebo-controlled study of the therapeutic use of recombinant human erythropoietin for anemia associated with chronic renal failure in predialysis patients. Am J Kidney Dis 18: 50–59, 1991.Google Scholar
  64. 64.
    Thornthon R D, Lane P, Borghaei R C, Pease E A, Caro J, and Mochan E. Interleukin 1 induces hypoxia-inducible factor 1 in human gingival and synovial fibroblasts. Biochem J 350: 307–312, 2000.CrossRefGoogle Scholar
  65. 65.
    Tsuchiya T, Okada M, Ueda M, and Yasukochi Y. Activation of the erythropoietin promoter by a point mutation from GATA to TATA in the -30 region. J Biochem Tokyo 121: 193–196, 1997.PubMedGoogle Scholar
  66. 66.
    Vijayakumar S, Roach M, Wara W, Chan S K, Ewing C, Rubin S, Sutton H, Halpern H, Awan A, Houghton A, Quiet C, and Weichselbaum R. Effect of subcutaneous recombinant human erythropoietin in cancer patients receiving radiotherapy: preliminary results of a randomized, open-labeled, phase II trial. Int J Radiat Oncol Biol Phys 26: 721–729, 1993.PubMedCrossRefGoogle Scholar
  67. 67.
    Wagner K, Katschinski D M, Hasegawa J, Schumacher D, Meller B, Gembruch U, Schramm U, Jelkmann W, Gassmann M, and Fandrey J. Chronic inborn erythrocytosis leads to cardiac dysfunction and premature death in mice overexpressing erythropoietin. Blood 97: 536–542, 2001.PubMedCrossRefGoogle Scholar
  68. 68.
    Wang G L, Jiang B H, Rue E A, and Semenza G L. Hypoxia-inducible factor 1 is a basic- helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sri U S A 92: 5510–5514, 1995.CrossRefGoogle Scholar
  69. 69.
    Wenger R H. Mammalian oxygen sensing, signalling and gene regulation. J Exp Biol 203: 1253–1263, 2000.PubMedGoogle Scholar
  70. 70.
    White F C, Carroll S M, and Kamps M P. VEGF mRNA is reversibly stabilized by hypoxia and persistently stabilized in VEGF-overexpressing human tumor cell lines. Growth Factors 12: 289–301, 1995.PubMedCrossRefGoogle Scholar
  71. 71.
    Wolff M and Jelkmann W. Effects of chemotherapeutic and immunosuppressive drugs on the production of erythropoietin in human hepatoma cultures. Ann Hematol 66: 27–31, 1993.PubMedCrossRefGoogle Scholar
  72. 72.
    Zelzer E, Levy Y, Kahana C, Shilo B Z, Rubinstein M, and Cohen B. Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-lalpha/ARNT. EMBOJ 17: 5085–5094, 1998.CrossRefGoogle Scholar
  73. 73.
    Zhong H, Agani F, Baccala A A, Laughner E, Rioseco C N, Isaacs W B, Simons J W, and Semenza G L. Increased expression of hypoxia inducible factor-1 alpha in rat and human prostate cancer. Cancer Res 58: 5280–5284, 1998.PubMedGoogle Scholar
  74. 74.
    Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu M M, Simons J W, and Semenza G L. Modulation of hypoxia-inducible factor 1 alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 60: 1541–1545, 2000.PubMedGoogle Scholar
  75. 75.
    Zundel W, Schindler C, Haas K D, Koong A, Kaper F, Chen E, Gottschalk A R, Ryan H E, Johnson R S, Jefferson A B, Stokoe D, and Giaccia A J. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev 14: 391–396, 2000.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Wolfgang Jelkmann
    • 1
  • Thomas Hellwig-Bürgel
    • 1
  1. 1.Institute of PhysiologyMedical University of LuebeckLuebeckGermany

Personalised recommendations