Skip to main content

Biology of erythropoietin

  • Chapter
Hypoxia

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 502))

Abstract

Hypoxia induces tissue-specific gene products such as erythropoietin (EPO) and vascular endothelial growth factor (VEGF), which improve the peripheral O2 supply, and glucose transporters and glycolytic enzymes, which adapt cells to reduced O2 availability. EPO has been the fountainhead in research on pO2-dependent synthesis of proteins. The EPO gene enhancer (like the flanking DNA-elements of several other pO2-controlled genes) contains a consensus sequence (CGTG) that binds the trans-acting dimeric hypoxia-inducible factor 1 (HIF-1α/β). The α-subunit of HIF-1 is rapidly degraded by the proteasome under normoxic conditions, but it is stabilized on occurrence of hypoxia. HIF-1 DNA-binding is also increased by insulin, and by interleukin-1 and tumor necrosis factor. Thus, in some aspects there is synergy in the cellular responses to hypoxia, glucose deficiency and inflammation. In viewing clinical medicine recombinant human EPO (rHu-EPO) has become the mainstay of treatment for renal anemia. Endogenous EPO and rHu-EPO are similar except for minor differences in the pattern of their 4 carbohydrate chains. RHu-EPO is also administered to patients suffering from non-renal anemias, such as in autoimmune diseases or malignancies. The correction of anemia in patients with solid tumors is not merely considered a palliative intervention. Hypoxia promotes tumor growth. However, the benefits of the administration of rHu-EPO to tumor patients with respect to its positive effects on tumor oxygenation, tumor growth inhibition and support of chemo- and radiotherapy is still debatable ground.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acker H. Mechanisms and meaning of cellular oxygen sensing in the organism. Respir Physiol 95: 1–10, 1994.

    Article  PubMed  CAS  Google Scholar 

  2. Adamson J W and Eschbach J W. Treatment of the anemia of chronic renal failure with recombinant human erythropoietin. Annu Rev Med 41: 349–360, 1990.

    Article  PubMed  CAS  Google Scholar 

  3. Allen D, Breen C, Yaqoob M, and Macdougall L. Inhibition of CFU-E colony formation in uremic patients with inflammatory disease: Role of IFN-gamma and TNF-alpha. J Investig Med 47: 204–210, 1999.

    PubMed  CAS  Google Scholar 

  4. Barosi G. Inadequate erythropoietin response to anemia: definition and clinical relevance. Ann Hematol 68: 215–223, 1994.

    Article  PubMed  CAS  Google Scholar 

  5. Barosi G, Marchetti M, and Liberato N L. Cost-effectiveness of recombinant human erythropoietin in the prevention of chemotherapy-induced anaemia. Br J Cancer 78: 781–787, 1998.

    Article  PubMed  CAS  Google Scholar 

  6. Beguin Y, Loo M, R’Zik S, Sautois B, Lejeune F, Rorive G, and Fillet G. Early prediction of response to recombinant human erythropoietin in patients with the anemia of renal failure by serum transferrin receptor and fibrinogen. Blood 82: 2010–2016, 1993.

    PubMed  CAS  Google Scholar 

  7. Besarab A, Bolton W K, Browne J K, Egrie J C, Nissenson A R, Okamoto D M, Schwab S J, and Goodkin D A. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N Engl J Med 339: 584–590, 1998.

    Article  PubMed  CAS  Google Scholar 

  8. Brecher M E, Goodnough L T, and Monk T. Where does preoperative erythropoietin therapy count? A mathematical perspective. Transfusion 39: 392–395, 1999.

    Article  PubMed  CAS  Google Scholar 

  9. Bunn H F and Poyton R O. Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 76: 839–885, 1996.

    PubMed  CAS  Google Scholar 

  10. Canadian Orthopedic Perioperative Erythropoietin Study Group. Effectiveness of perioperative recombinant human erythropoietin in elective hip replacement. Lancet 342: 1227–1232, 1993.

    Article  Google Scholar 

  11. Cazzola M and Beguin Y. New tools for clinical evaluation of erythron function in man. Br J Haematol 80: 278–284, 1992.

    Article  PubMed  CAS  Google Scholar 

  12. Cazzola M, Messinger D, Battistel V, Bron D, Cimino R, Enller Z L, Essers U, Greil R, Grossi A, Jager G, LeMevel A, Najman A, Silingardi V, Spriano M, van Hoof A, and Ehmer B. Recombinant human erythropoietin in the anemia associated with multiple myeloma or non-Hodgkin’s lymphoma: dose finding and identification of predictors of response. Blood 86: 4446–4453, 1995.

    PubMed  CAS  Google Scholar 

  13. Chandel N S, Maltepe E, Goldwasser E, Mathieu C E, Simon M C, and Schumacker P T. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci U S A 95: 11715–11720, 1998.

    Article  PubMed  CAS  Google Scholar 

  14. Dunst J. Hemoglobin level and anemia in radiation oncology: prognostic impact and therapeutic implications. Semin Oncol 27: 4–8, 2000.

    PubMed  CAS  Google Scholar 

  15. Dusenbery K E, McGuire W A, Holt P J, Carson L F, Fowler J M, Twiggs L B, and Potish R A. Erythropoietin increases hemoglobin during radiation therapy for cervical cancer. Int J Radiat Oncol Biol Phys 29: 1079–1084, 1994.

    Article  PubMed  CAS  Google Scholar 

  16. Fandrey J and Genius J. Reactive oxygen species asf regulators of oxygen dependent gene expression. Adv Exp Med Biol 475: 153–159, 2000.

    Article  PubMed  CAS  Google Scholar 

  17. Fandrey J. Hypoxia-inducible gene expression. Respir Physiol 101: 1–10, 1995.

    Article  PubMed  CAS  Google Scholar 

  18. Fandrey J and Bunn H F. In vivo and in vitro regulation of erythropoietin mRNA: measurement by competitive polymerase chain reaction. Blood 81: 617–623, 1993.

    PubMed  CAS  Google Scholar 

  19. Fandrey J, Frede S, and Jelkmann W. Role of hydrogen peroxide in hypoxia-induced erythropoietin production. Biochem J 303: 507–510, 1994.

    PubMed  CAS  Google Scholar 

  20. Fandrey J, Huwiler A, Frede S, Pfeilschifter J, and Jelkmann W. Distinct signaling pathways mediate phorbol-ester-induced and cytokine-induced inhibition of erythropoietin gene expression. Eur J Biochem 226: 335–340, 1994.

    Article  PubMed  CAS  Google Scholar 

  21. Faquin W C, Schneider T J, and Goldberg M A. Effect of inflammatory cytokines on hypoxia-induced erythropoietin production. Blood 79: 1987–1994, 1992.

    PubMed  CAS  Google Scholar 

  22. Feldser D, Agani F, Iyer N V, Pak B, Ferreira G, and Semenza G L. Reciprocal positive regulation of hypoxia-inducible factor 1 alpha and insulin-like growth factor 2. Cancer Res 59: 3915–3918, 1999.

    PubMed  CAS  Google Scholar 

  23. Ferrara N and Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev 18: 4–25, 1997.

    Article  PubMed  CAS  Google Scholar 

  24. Goodnough L T, Monk T G, and Andriole G L. Erythropoietin therapy. N Engl J Med 336: 933–938, 1997.

    Article  PubMed  CAS  Google Scholar 

  25. Gorlach A, Holtermann G, Jelkmann W, Hancock J T, Jones S A, Jones O T, and Acker H. Photometric characteristics of haem proteins in erythropoietin-producing hepatoma cells (HepG2). Biochem J 290: 771–776, 1993.

    PubMed  Google Scholar 

  26. Graeber T G, Osmanian C, Jacks T, Housman D E, Koch C J, Lowe S W, and Giaccia A J. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379: 88–91, 1996.

    Article  PubMed  CAS  Google Scholar 

  27. Green S L and Giaccia A J. Tumor hypoxia and the cell cycle: implications for malignant progression and response to therapy. Cancer J Sci Am 4: 218–223, 1998.

    PubMed  CAS  Google Scholar 

  28. Hellwig-Burgel T., Rutkowski K, Metzen E, Fandrey J, and Jelkmann W. Interleukin-1 beta and tumor necrosis factor-alpha stimulate DNA binding of hypoxia-inducible factor-1. Blood 94: 1561–1567, 1999.

    PubMed  CAS  Google Scholar 

  29. Horiguchi H, Kayama F, Oguma E, Willmore W G, Hradecky P, and Bunn H F. Cadmium and platinum suppession of erythropoietin production in cell culture: clinical implications. Blood 96: 3143–3747, 2000.

    Google Scholar 

  30. Horl W H, Cavill I, MacDougall I C, Schaefer R M, and Sunder-Plassmann G. How to diagnose and correct iron deficiency during r-huEPO therapy-a consensus report. Nephrol Dial Transplant 11: 246–250, 1996.

    Article  PubMed  CAS  Google Scholar 

  31. Imagawa S, Yamamoto M, Ueda M, and Miura Y. Erythropoietin gene expression by hydrogen peroxide. Int J Hematol 64: 189–195, 1996.

    Article  PubMed  CAS  Google Scholar 

  32. Ishimitsu T, Tsukada H, Ogawa Y, Numabe A, and Yagi S. Genetic predisposition to hypertension facilitates blood pressure elevation in hemodialysis patients treated with erythropoietin. Am J Med 94: 401–406, 1993.

    Article  PubMed  CAS  Google Scholar 

  33. Jelkmann W. Erythropoietin: structure, control of production, and function. Physiol Rev 72: 449–489, 1992.

    PubMed  CAS  Google Scholar 

  34. Jelkmann W. Proinflammatory cytokines lowering erythropoietin production. J Interferon Cytokine Res 18: 555–559, 1998.

    Article  PubMed  CAS  Google Scholar 

  35. Jelkmann W, Pagel H, Wolff M, and Fandrey J. Monokines inhibiting erythropoietin production in human hepatoma cultures and in isolated perfused rat kidneys. Life Sci 50: 301–308, 1992.

    Article  PubMed  CAS  Google Scholar 

  36. Jelkmann W and Wolff M. [Determination of erythropoietin activity in serum. Methods, indications and interpretation of the data]. Dtsch Med Wochenschr 116: 230–234, 1991.

    PubMed  CAS  Google Scholar 

  37. Jiang B H, Semenza G L, Bauer C, and Marti H H. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 271: C1172–C1180, 1996.

    PubMed  CAS  Google Scholar 

  38. Kelleher D K, Mattheinsen U, Thews O, and Vaupel P. Blood flow, oxygenation, and bioenergetic status of tumors after erythropoietin treatment in normal and anemic rats. Cancer Res 56: 4728–4734, 1996.

    PubMed  CAS  Google Scholar 

  39. Klingmuller U. The role of tyrosine phosphorylation in proliferation and maturation of erythroid progenitor cells-signals emanating from the erythropoietin receptor. Eur J Biochem 249: 637–647, 1997.

    Article  PubMed  CAS  Google Scholar 

  40. Koury M J and Bondurant M C. The molecular mechanism of erythropoietin action. Eur J Biochem 210: 649–663, 1992.

    Article  PubMed  CAS  Google Scholar 

  41. Koury S T, Koury M J, Bondurant M C, Caro J, and Graber S E. Quantitation of erythropoietin-producing cells in kidneys of mice by in situ hybridization: correlation with hematocrit, renal erythropoietin mRNA, and serum erythropoietin concentration. Blood 74: 645–651, 1989.

    PubMed  CAS  Google Scholar 

  42. Lavey R S and Dempsey W H. Erythropoietin increases hemoglobin in cancer patients during radiation therapy. Int J Radiat Oncol Biol Phys 27: 1147–1152, 1993.

    Article  PubMed  CAS  Google Scholar 

  43. MacDougall I C. Novel erythropoiesis stimulating protein. Semin Nephrol 20: 375–381, 2000.

    PubMed  CAS  Google Scholar 

  44. Marti H H, Wenger R H, Rivas L A, Straumann U, Digicaylioglu M, Henn V, Yonekawa Y, Bauer C, and Gassmann M. Erythropoietin gene expression in human, monkey and murine brain. Eur J Neurosci 8: 666–676, 1996.

    Article  PubMed  CAS  Google Scholar 

  45. Maxwell P H, Ferguson D J, Nicholls L G, Iredale J P, Pugh C W, Johnson M H, and Ratcliffe P J. Sites of erythropoietin production. Kidney Int 51: 393–401, 1997.

    Article  PubMed  CAS  Google Scholar 

  46. Maxwell P H, Osmond M K, Pugh C W, Heryet A, Nicholls L G, Tan C C, Doe B G, Ferguson D J, Johnson M H, and Ratcliffe P J. Identification of the renal erythropoietin-producing cells using transgenic mice. Kidney Int 44: 1149–1162, 1993.

    Article  PubMed  CAS  Google Scholar 

  47. Maxwell P H, Wiesener M S, Chang G W, Clifford S C, Vaux E C, Cockman M E, Wykoff C C, Pugh C W, Maher E R, and Ratcliffe P J. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399: 271–275, 1999.

    Article  PubMed  CAS  Google Scholar 

  48. Means RT and Krantz S. Progress in understanding the pathogenesis of the anemia of chronic disease. Blood 80: 1639–1647, 1992.

    PubMed  Google Scholar 

  49. Miller C B, Jones R J, Piantadosi S, Abeloff M D, and Spivak J L. Decreased erythropoietin response in patients with the anemia of cancer. N EnglJ Med 322: 1689–1692, 1990.

    Article  CAS  Google Scholar 

  50. Pagel H, Jelkmann W, and Weiss C. O2-supply to the kidneys and the production of erythropoietin. Respir Physiol 77: 111–117, 1989.

    Article  PubMed  CAS  Google Scholar 

  51. Ratcliffe P J, Ebert B L, Firth J D, Gleadle J M, Maxwell P H, Nagao M, O’Rourke J F, Pugh C W, and Wood S M. Oxygen regulated gene expression: erythropoietin as a model system. Kidney Int 51: 514–526, 1997.

    Article  PubMed  CAS  Google Scholar 

  52. Ruschitzka F T, Wenger R H, Stallmach T, Quaschning T, de Wit C, Wagner K, Kelm M, Noll G, Rülicke T, Shaw S, Lindberg R L P, Rodenwald B, Lutz H, Bauer C, Lüscher T F, and Gassmann M. Nitric oxide prevents cardiovascular disease and determines survival in Polyglobulic mice overexpressing erythropoietin. Proc Natl Acad Sci USA 97: 11609–11613,2000.

    Article  PubMed  CAS  Google Scholar 

  53. Sadamoto Y, Igase K, Sakanaka M, Sato K, Otsuka H, Sakaki S, Masuda S, and Sasaki R. Erythropoietin prevents place navigation disability and cortical infarction in rats with permanent occlusion of the middle cerebral artery. Biochem Biophys Res Commun 253: 26–32, 1998.

    Article  PubMed  CAS  Google Scholar 

  54. Sakanaka M, Wen T C, Matsuda S, Masuda S, Morishita E, Nagao M, and Sasaki R. In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Natl Acad Sci USA 95: 4635–4640, 1998.

    Article  PubMed  CAS  Google Scholar 

  55. Salceda S and Caro J. Hypoxia-inducible factor 1 alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 272: 22642–22647, 1997.

    Article  PubMed  CAS  Google Scholar 

  56. Semenza G L. Regulation of erythropoietin production. New insights into molecular mechanisms of oxygen homeostasis. Hematol Oncol Clin North Am 8: 863–884, 1994.

    PubMed  CAS  Google Scholar 

  57. Sowade O, Warnke H, Scigalla P, Sowade B, Franke W, Messinger D, and Gross J. Avoidance of allogeneic blood transfusions by treatment with epoetin beta (recombinant human erythropoietin) in patients undergoing open-heart surgery. Blood 89:411–418, 1997.

    PubMed  CAS  Google Scholar 

  58. Sutherland R M. Tumor hypoxia and gene expression — implications for malignant progression and therapy. Acta Oncol 37: 567–574, 1998.

    Article  PubMed  CAS  Google Scholar 

  59. Tabata M, Tarumota T, Ohmine K, Furukawa Y, Hatake K, Ozawa K, Hasegawa Y, Mukai H, Yamamoto M, and Imagawa S. Stimulation of GATA-2 as a mechanism of hydrogen peroxide suppression in hypoxia-induced erythropoietin gene expression. Journal of Cellular Physiology 186: 260–267, 2001.

    Article  PubMed  CAS  Google Scholar 

  60. Tan C C, Eckardt K U, Firth J D, and Ratcliffe P J. Feedback modulation of renal and hepatic erythropoietin mRNA in response to graded anemia and hypoxia. Am J Physiol 263:F474-F481, 1992.

    PubMed  CAS  Google Scholar 

  61. Teicher B A. Physiologic mechanisms of therapeutic resistance. Blood flow and hypoxia. Hematol Oncol Clin North Am 9: 475–506, 1995.

    PubMed  CAS  Google Scholar 

  62. Teicher B A, Holden S A, al-Achi A, and Herman T S. Classification of antineoplastic treatments by their differential toxicity toward putative oxygenated and hypoxic tumor subpopulations in vivo in the FSaIIC murine fibrosarcoma. Cancer Res 50: 3339–3344, 1990.

    PubMed  CAS  Google Scholar 

  63. The US recombinant human erythropoietin predialysis study group. Double-blind, placebo-controlled study of the therapeutic use of recombinant human erythropoietin for anemia associated with chronic renal failure in predialysis patients. Am J Kidney Dis 18: 50–59, 1991.

    Google Scholar 

  64. Thornthon R D, Lane P, Borghaei R C, Pease E A, Caro J, and Mochan E. Interleukin 1 induces hypoxia-inducible factor 1 in human gingival and synovial fibroblasts. Biochem J 350: 307–312, 2000.

    Article  Google Scholar 

  65. Tsuchiya T, Okada M, Ueda M, and Yasukochi Y. Activation of the erythropoietin promoter by a point mutation from GATA to TATA in the -30 region. J Biochem Tokyo 121: 193–196, 1997.

    PubMed  CAS  Google Scholar 

  66. Vijayakumar S, Roach M, Wara W, Chan S K, Ewing C, Rubin S, Sutton H, Halpern H, Awan A, Houghton A, Quiet C, and Weichselbaum R. Effect of subcutaneous recombinant human erythropoietin in cancer patients receiving radiotherapy: preliminary results of a randomized, open-labeled, phase II trial. Int J Radiat Oncol Biol Phys 26: 721–729, 1993.

    Article  PubMed  CAS  Google Scholar 

  67. Wagner K, Katschinski D M, Hasegawa J, Schumacher D, Meller B, Gembruch U, Schramm U, Jelkmann W, Gassmann M, and Fandrey J. Chronic inborn erythrocytosis leads to cardiac dysfunction and premature death in mice overexpressing erythropoietin. Blood 97: 536–542, 2001.

    Article  PubMed  CAS  Google Scholar 

  68. Wang G L, Jiang B H, Rue E A, and Semenza G L. Hypoxia-inducible factor 1 is a basic- helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sri U S A 92: 5510–5514, 1995.

    Article  CAS  Google Scholar 

  69. Wenger R H. Mammalian oxygen sensing, signalling and gene regulation. J Exp Biol 203: 1253–1263, 2000.

    PubMed  CAS  Google Scholar 

  70. White F C, Carroll S M, and Kamps M P. VEGF mRNA is reversibly stabilized by hypoxia and persistently stabilized in VEGF-overexpressing human tumor cell lines. Growth Factors 12: 289–301, 1995.

    Article  PubMed  CAS  Google Scholar 

  71. Wolff M and Jelkmann W. Effects of chemotherapeutic and immunosuppressive drugs on the production of erythropoietin in human hepatoma cultures. Ann Hematol 66: 27–31, 1993.

    Article  PubMed  CAS  Google Scholar 

  72. Zelzer E, Levy Y, Kahana C, Shilo B Z, Rubinstein M, and Cohen B. Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-lalpha/ARNT. EMBOJ 17: 5085–5094, 1998.

    Article  CAS  Google Scholar 

  73. Zhong H, Agani F, Baccala A A, Laughner E, Rioseco C N, Isaacs W B, Simons J W, and Semenza G L. Increased expression of hypoxia inducible factor-1 alpha in rat and human prostate cancer. Cancer Res 58: 5280–5284, 1998.

    PubMed  CAS  Google Scholar 

  74. Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu M M, Simons J W, and Semenza G L. Modulation of hypoxia-inducible factor 1 alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 60: 1541–1545, 2000.

    PubMed  CAS  Google Scholar 

  75. Zundel W, Schindler C, Haas K D, Koong A, Kaper F, Chen E, Gottschalk A R, Ryan H E, Johnson R S, Jefferson A B, Stokoe D, and Giaccia A J. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev 14: 391–396, 2000.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jelkmann, W., Hellwig-Bürgel, T. (2001). Biology of erythropoietin. In: Roach, R.C., Wagner, P.D., Hackett, P.H. (eds) Hypoxia. Advances in Experimental Medicine and Biology, vol 502. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3401-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3401-0_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3374-4

  • Online ISBN: 978-1-4757-3401-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics