Transport Processes in Aerodisperse Systems: Transitional Growth of Non-Spherical Particles and Mobility of Ions

  • Alexey B. Nadykto


This paper consists of three different problems related to the transport processes in the aerodisperse systems. Transitional growth rates for non-spherical particles, derived by the modified boundary sphere method (see e.g. Fuchs (1964), Seinfeld and Pandis (1998)), are presented in the second section. The third section discusses a transitional condensational growth of a multicomponent non-spherical particle and the fourth section considers a mobility of ions.


Vapour Molecule Transitional Regime Knudsen Layer Free Molecular Regime Atmospheric Aerosol Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dahneke, B. (1983) Simple kinetic theory of Brownian diffusion in vapors and aerosols, in Theory of Dispersed Multiphase Flow, (Edited by R.E.Meyer ), Academic Press, New York, 97–133Google Scholar
  2. 2.
    Fuchs, N.A. (1959), Evaporation and Growth of Droplets in a Gaseous Media, Pergamon Press, New-YorkGoogle Scholar
  3. 3.
    Fuchs, N.A. and Sutugin, A.G. (1970) Highly Dispersed Aerosols, Ann Arbor Science Publishers., Ann Arbor.Google Scholar
  4. 4.
    Fuchs, N.A. (1964). Mechanics of Aerosols, Pergamon Press, New-York.Google Scholar
  5. 5.
    Hirschfelder J.O., Curtiss C.F. and Bird, R.B. (1954). Molecular Theory of Gases and Liquids, Wiley, New York.zbMATHGoogle Scholar
  6. 6.
    Hobbs, P.V. (1974), Ice Physics, Clarendon Press, OxfordGoogle Scholar
  7. 7.
    Hopke, P.K. et al. (1992). Health Physics, 63, 560CrossRefGoogle Scholar
  8. 8.
    Korshunov, V.K. (1980). O ravnovesii zaryzenoi kapli s parom, Izv.AN USSR, Fizika atmofery i okeana, 16 (I), 92–94Google Scholar
  9. 9.
    Lehtinen K., Kulmala M., Vesala T. and Jokiniemi J. (1998). Analytical method to calculate condensation rates of a multicomponent droplet, J. Aerosol Science, 29, 1041–1052.CrossRefGoogle Scholar
  10. 10.
    Lie, W. and Davis, E.J. (1995) Aerosol evaporation in the transitional regime, Aerosol Sci. Technol., 25, 11–21Google Scholar
  11. 11.
    Loyalka, S.K. (1983) Modeling of condensation on aerosols. Prog. Nucl. Energy, 12, 1–8CrossRefGoogle Scholar
  12. 12.
    Makela J.M. et al. (1996). Comparison of mobility equivalent diameter with Kelvin-Thomson diameter using ion mobility data. J. Chem. Phys., 105 (4), 1562–1571CrossRefGoogle Scholar
  13. 13.
    Mason B.J.(1971). The Physics of Clouds,2 ed. Clarendon Press, 671Google Scholar
  14. 14.
    Mattila T., Kulmala M. and Vesala T. (1997). On the condensational growth of a multicomponent droplets. J. Aerosol Science, 28, 553–564.CrossRefGoogle Scholar
  15. 15.
    Nadykto, A.B. (2001). Ph.D. thesis, University of Kuopio, Kuopio, Finland.Google Scholar
  16. 16.
    Nadykto, A.B. and E.R.Shchukin (1999). Vaporization and growth of aerosol particles, given internal heat release and radiant heat exchange. In Mathematical Models of Non-Linear Excitations, Dynamics, Transfer and Control in Condensed Systems and Other Media (Edited by Uvarova L.A. et al.), Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  17. 17.
    Nadykto, A.B., Shchukin E.R., M.Kulmala and A.Laaksonen. A generalised reformulation of Fuchs condensation theory to predict a transitional condensational growth of ice particles, (to be published).Google Scholar
  18. 18.
    Pruppacher, H.R. and Klett, J.D. (1978) Microphysics of Clouds and Precipitation, Kluwer Academic/Plenum Publishers, Dordgerht/ Boston/London.CrossRefGoogle Scholar
  19. 19.
    Pruppacher H.R. and Klett, J.D. (1997) Microphysics of Clouds and Precipitation, Second edition, Kluwer Academic Publishers, Dordgerht/ Boston/London.Google Scholar
  20. 20.
    Ramamurthi, M. and Hopke, P.K. (1989). Health Phys., 56, 189CrossRefGoogle Scholar
  21. 21.
    Seinfeld, J.H. (1986), Atmospheric Chemistry and Physics of Air Pollution, Wiley, New York.Google Scholar
  22. 22.
    Seinfeld, J.H. and Pandis, S.N. (1998), Atmospheric Chemistry and Physics, Wiley, New York.Google Scholar
  23. 23.
    Shchukin E.R.. and Nadykto A.B (1999). Diffusive vaporization and growth of assermbly of N large particles. In Mathematical Models of Non-Linear Excitations, Dynamics, Transfer and Control in Condensed Systems and Other Media (Edited by Uvarova L.A. et al.), Kluwer Academic/Plenum Publishers, New York.Google Scholar
  24. 24.
    Shchukin E.R., Yalamov Y.l. and Bahtilov V.I. (1979). in Fizika aerodispersnih system, 4 (1), MRPI Publisher, Moscow, 130–143.Google Scholar
  25. 25.
    Sitarsky, M. and B.Nowakovski (1979). Condensation rate of trace vapor on Knudsen aerosols from solution of the Bolzmann equation, J. Colloid Interface Sci., 72, 113–122CrossRefGoogle Scholar
  26. 26.
    Tamm, I.E. (1976). Osnovi Teorii Electrichestva, Nauka, Moskva.Google Scholar
  27. 27.
    Tammett, H. (1995). J.Aerosol Science, 25, 459CrossRefGoogle Scholar
  28. 28.
    Williams, M.M.R. and Loyalka, S.K. (1991). Aerosol Science: Theory and Practice, Pergamon, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Alexey B. Nadykto
    • 1
  1. 1.Department of Applied PhysicsUniversity of KuopioKuopioFinland

Personalised recommendations