Skip to main content

Biopolymers and Artificial Biopolymers in Biomedical Applications, an Overview

  • Chapter
Biorelated Polymers

Abstract

Nowadays, the domains of life-respecting, therapeutic polymeric systems and materials are among the most attractive areas in polymer science. Increasing attention is being paid to polymeric compounds that can be bioassimilated, especially in the field of time-limited therapeutic applications. Basically biopolymers are of interest because of their inherent biodegradability. However, a close look at the requirements to be fulfilled show that only a few of them can be used in the human body. The interest and the strategy to make artificial biopolymers, i.e. polymers of non-natural origin that are made of prometabolite building blocks and that can serve as components of biomedical or pharmacological therapeutic systems, are recalled. A few examples of artificial biopolymers for biomedical applications are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vert, M., 1986, Polyvalent polymeric drug caniers, In “CRC Critical Reviews -Therapeutic Drug Carrier Systems”, (S.D. Bruck Ed.), CRC Press, Boca Raton, 2: 291–327

    Google Scholar 

  2. Vert, M., 1987, Design and synthesis of bioresorbable polymers for controlled release of drugs, in “Controlled release of drugs from polymeri particles and Macromolecules”, (S.S. Davis & L. Illum Eds), Wright IOP Publ. Ltd., Bristol, p.117–125

    Google Scholar 

  3. Hoenich, N. A., and Stamp, S., 2000, Clinical investigation of the role of membrane structure on blood contact and solute transport characteristics of a cellulose membrane, Biomaterials 21: 317–324

    Article  CAS  Google Scholar 

  4. Draget, K. I., Skjak-Braek, G., and Smidsrod, O., 1994, Alginic acid gels: Effects of alginate chemical composition and molecular weights, Carbohydr. Polym. 25: 31–38

    Article  CAS  Google Scholar 

  5. Qin, Y., and Gilding, R. K., 1996, Alginate fibers and wound dressings, Medic. Device Technol. 7: 32–41

    CAS  Google Scholar 

  6. Mishler, J. M., 1984, Synthetic plasma volume expanders — their pharmacology, safety and clinical efficacy, Clinics in Haematol. 13: 75–92

    CAS  Google Scholar 

  7. Muzzarelli, R. A. A., 1993, Biochemical significance of exogenous chitin and chitosan in animals and patients, Carbohydr. Polym. 20: 7–16

    Article  CAS  Google Scholar 

  8. Davidson, J. M., Nanney, L. B., Broadley, K. N., Whitsett, J. S., Aquino, A. M., Beccaro, M., and Rastrelli, A., 1990, Hyaluronate derivatives and their application to wound healing : Preliminary observations, in Polymer in Medicine — 4, (C. Migliaresi, E. Chiellini, P. Giusti and L. Nicolais Eds.), Elsevier Applied Science, London, p.171–177

    Google Scholar 

  9. Bourzeix, K., 2000, Biomatériaux articulaires injectables, in “Actualités en Biomatériaux”, (D. Mainard et al., eds.), Editions Romillat, Paris, p.141–146

    Google Scholar 

  10. Lee, S. Y., 1996, Bacterial polyhydroxyalkanoates, Biotech. Bioeng. 49: 1–14

    Google Scholar 

  11. Lenz, R. W., 1993, Biodegradable Polymers, Adv. Polym. Sci. 107: 1–40

    Article  CAS  Google Scholar 

  12. Marois, Y., Zhang, Z., Vert, M., Deng, X., Lenz, R. and Guidoin, R., 1999, Mechanism and rate of degradation of polyhydroxyoctanoate films in aqueous media : a long term study, J. Biomed. Mater. Res. 49: 216–224

    Article  Google Scholar 

  13. Parkany, M., 1984, Polymers of natural origin as biomaterials. 2. Collagen and gelatin, in Macromolecular Biomaterials, (G.W. Hastings and P. Ducheyne Eds.), CRC Press, Boca Raton, p. 111–118

    Google Scholar 

  14. Casagranda, F., Ellender, G., Werkmeister, J. A., and Ramshaw, J. A. M., 1994, Evaluation of alternative glutaraldehyde stabilization strategies for collagenous biomaterials, J. Mater. Sci. : Mater. In Med. 5: 332–337

    Article  CAS  Google Scholar 

  15. Martinowitz, U., Spotnitz, W. D., and De-Gaetano, G.,1997, Fibrin tissues adhesives. 1997 State of the art, Thromb. Haemost. 78: 661–666

    CAS  Google Scholar 

  16. Burnouf-Radosewich, M., Burnouf, T., and Huart, J.J., 1990, Biochemical and physical properties of a solvent-detergent-treated fibrin glue, Vox Sang. 58: 77–84

    Article  Google Scholar 

  17. Park, M. S., and Cha, C. A., 1993, Biochemical aspects of autologous fibrin glue derived from ammonium sulfate precipitation, Laryngoscope 103: 193–196

    Article  CAS  Google Scholar 

  18. G. Kerényi, 1984, Polymers of natural origin as biomaterials. 1. Fibrin in Macromolecular Biomaterials, (G.W. Hastings and P. Ducheyne Eds.), CRC Press, Boca Raton, p. 91–110

    Google Scholar 

  19. Li, S.M., and Vert, M., 1995, Biodegradation of aliphatic polyesters, in “Degradable Polymers: Principles and Applications”, (G. Scott and D. Gilead Eds.), Chapman & Hall, London, p. 43–87

    Chapter  Google Scholar 

  20. Athanasiou, K. A., Agrawal, C. M., Barber, F. A., and Burkhart, S. S., 1998, Orthopaedic applications for PLA-PGA biodegradablme polymers, Arthroscopy 4; 726–737

    Google Scholar 

  21. Marcincinova-Benabdillah, K., Coudane, J., Boustta, M., Engel, R., and Vert, M., 1999, Synthesis and characterization of novel degradable polyesters derived from D-gluconic and glycolic acids, Macromolecules 32: 8774–8780

    Article  Google Scholar 

  22. Braud, C., and Vert, M., 1993, Poly(ß-malic acid) based biodegradable polyesters aimed at pharmacological uses, Trends in Polym. Sci. 3: 57–65

    Google Scholar 

  23. Vert, M., 1998, Chemical routes to poly(ß-malic acid) and potential applications of this water soluble bioresorbable poly(ß-hydroxy alkanoate), Polym. Degrad. And Stab. 59: 169–175

    Article  CAS  Google Scholar 

  24. Cammas, S., Guérin, Ph., Girault, J. P., Holler, E., Gache, Y., Vert, M., 1993, Natural poly(L-malic acid): NMR shows a poly(3-hydroxy acid)-type structure, Macromolecules 28: 4681–4684.

    Article  Google Scholar 

  25. Fischer, H., Erdmann, S., Holler, E., 1989, An unusual polyanion from Physarum polycephalum that inhibits homologous DNA polymerase a in vitro, Biochemistry 28: 5219–5226.

    Article  CAS  Google Scholar 

  26. Boustta, M., Huguet, J., and Vert, M., 1991, New functional polyamides derived from citric acid and L-lysine: Synthesis and characterization, Makromol. Chem., Macromol. Symp., 47: 345–355

    Article  CAS  Google Scholar 

  27. Henin, O., Boustta, M., Coudane, J., Domurado, M., Domurado, D., and Vert, M., 1998, Covalent binding of mannosyl ligand via 6-O position and glycolic arm to target a PLCA-type degradable drug carrier toward macrophages, J. Bioact. Comp. Polym. 13 19–32

    CAS  Google Scholar 

  28. Abdellaoui, K., Boustta, M., Morjani, H., Manfait, M. and Vert, M., 1998, Metabolitederived artificial polymers designed for drug targeting, cell penetration and bioresorption, Europ. J. Pharm. Sci. 6: 61–73

    Article  CAS  Google Scholar 

  29. Gautier, S., Boustta, M., and Vert, M., 1997, Poly(L-lysine citramide), a water soluble bioresorbable carrier for drug delivery : Aqueous solution properties of hydrophobized derivatives, J. Bioact. Comp. Polym. 12: 77–98

    CAS  Google Scholar 

  30. Rossignol, H., Boustta, M. Vert, 1999, Synthetic poly(ß-hydroxyalkanoates) with carboxylic acid or primary amine pendent groups and their complexes, Intern. J. Biol. Macromol. 25: 255–264

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vert, M. (2001). Biopolymers and Artificial Biopolymers in Biomedical Applications, an Overview. In: Chiellini, E., Gil, H., Braunegg, G., Buchert, J., Gatenholm, P., van der Zee, M. (eds) Biorelated Polymers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3374-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3374-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3369-0

  • Online ISBN: 978-1-4757-3374-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics