Structural Materials Made Of Renewable Resources (Biocomposites)

  • Jörg Nickel
  • Ulrich Riedel
Chapter

Abstract

In view of the increasing shortage of resources as well as growing ecological damage, the aspects of the exploitation of raw materials and the recovery after the end of the lifetime of products have to increasingly be taken into consideration. In addition, the aspect of saving energy by means of lightweight constructions must also be regarded. The use of conventional, i.e. petrochemically-based plastics and fibre-reinforced polymers, the production process, as well as usage and recovery are often very difficult and demand considerable technical resources. An answer to solve all these problems may be provided by natural fibre-reinforced biopolymers based upon renewable resources, called biocomposites in the following. By embedding plant fibres, e.g. from flax, hemp, or ramie (cellulose fibres) into biopolymeric matrices, e.g. derivatives from cellulose, starch, shellac, or plant oils, fibre-reinforced polymers are obtained that can be integrated into natural cycles in an environmentally-friendly manner, e.g. by classic recycling, by CO2-neutral incineration (including recovery of energy), and possibly by composting.

Keywords

Renewable Resource Natural Fibre Hemp Fibre Lightweight Construction Fibre Composite Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Michaeli, W., and Wegener M., 1990, Einführung in die Technologie der Faserverbundwerkstoffe. Hanser Verlag publishing company, Munich.Google Scholar
  2. 2.
    Carlsson, L.A., and Byron Pipes, R., 1989, Hochleistungsfaserverbundwerkstoffe — Herstellung und experimentielle Charakterisierung. B.G. Teubner-Verlag publishing company, Stuttgart.CrossRefGoogle Scholar
  3. 3.
    Moser, K., 1992, Faser-Kunststoff-Verbund. VDI-Verlag GmbH publishing company, Düsseldorf.CrossRefGoogle Scholar
  4. 4.
    Ehrenstein, G.W., 1992, Faserverbund-Kunststoffe. Carl Hanser Verlag publishing company, Munich.Google Scholar
  5. 5.
    DIN 60 001, 1990, Textile Faserstoffe — Naturfasern. Deutsches Institut für Normung (German Institute for Standardisation), Berlin.Google Scholar
  6. 6.
    Wagner, E., 1961, Die textilen Rohstoffe (Natur- und Chemiefaserstoffe). In Teil T12 Handbuch für Textilingenieure und Textilpraktiker, Dr. Spohr-Verlag publishing company Wuppertal-Elberfeld.Google Scholar
  7. 7.
    Flemming, M., Ziegmann, G., and Roth, S., 1995, Faserverbundbauweisen, Fasern und Matrices. Springer-Verlag publishing company Berlin Heidelberg, pp. 155–179.CrossRefGoogle Scholar
  8. 8.
    Kromer, K.-H., Gottschalk, H., and Beckmann, A., 1995, Technisch nutzbare Leinfaser. In Landtechnik 6: 340–341.Google Scholar
  9. 9.
    Schliefer, K., 1975, Zellulosefaser, natürliche. In Ullmanns Encyklopädie der technischen Chemie, 4th edition, Publishing company: Verlag Chemie, Weinheim, Vol. 9: pp. 247–253.Google Scholar
  10. 10.
    Gessner, W., 1955, Naturfasern Chemiefasern. Fachbuchverlag, specialised books publishing company, Leipzig.Google Scholar
  11. 11.
    N.N., 1955, Volume IV. Technik 1.Teil. Landolt-Börnstein, 6th edition, pp. 158–295.Google Scholar
  12. 12.
    N.N., 1955, Volume IV: Technik 1.Teil. Landolt-Börnstein, 6th edition, pp. 322–420.Google Scholar
  13. 13.
    N.N., 1994, Flachs sowie andere Bast- und Hartfasern, Faserstoff-Tabellen nach P.-A. Koch. Special print from the chemical fibre/textile industry, 44th/96th year, Deutscher Fachverlag GmbH publishing company, Frankfurt/Main.Google Scholar
  14. 14.
    Haudek, H. W., and Viti, E., 1980, Textilfasern. Verlag Johann L. Bondi & Sohn publishing company, Wien-Perchtoldsdorf, Melliand Textilberichte KG, Heidelberg, pp. 15–73.Google Scholar
  15. 15.
    Haudek, H. W., and Viti, E., 1980, Textilfasern. Verlag Johann L. Bondi & Sohn publishing company, Wien-Perchtoldsdorf, Melliand Textilberichte KG, Heidelberg, pp. 122–141.Google Scholar
  16. 16.
    Haudek, H. W., and Viti, E., 1980, Textilfasern. Verlag Johann L. Bondi & Sohn publishing company, Wien-Perchtoldsdorf, Melliand Textilberichte KG, Heidelberg, pp. 156–161.Google Scholar
  17. 17.
    Ruge, J., 1989, Technologie der Werkstoffe, Vieweg-Verlag publishing company, Braunschweig.CrossRefGoogle Scholar
  18. 18.
    Seifert, H.-J., 1969, Fallschirmwerkstoffe. In Fallschirmtechnik und Bergungssysteme. (Publishers H.-D. Melzig), lecture series from DGLR-DFVLR-AGARD.Google Scholar
  19. 19.
    Fritz, H.-G., 3rd-.4th Sept. 1997, Innovative Polymerwerkstoffe unter Einbeziehung nachwachsender Rohstoffe. In Werkstoffe aus nachwachsenden Rohstoffen, Conference proceedings of the 1st International Symposium, Rudolstadt. Publishers Thüringisches Institut fiir Textil- und Kunststoff-Forschung e.V., Rudolstadt.Google Scholar
  20. 20.
    Aichholzer, W., 3rd-44th Sept. 1997, Bioabbaubare Faserverbundwerkstoffe auf der Basis nachwachsender Rohstoffe. In Werkstoffe aus nachwachsenden Rohstoffen, Conference proceedings of the 1st International Symposium, Rudolstadt. Publishers Thüringisches Institut fiir Textil- und Kunststoff-Forschung e.V., Rudolstadt.Google Scholar
  21. 21.
    Bastioli, C., 11th-12th Feb. 1998, Starch based bioplastics: Properties, applications and future perspectives. In Biologisch abbaubare Werkstoffe (BAW), Conference Proceedings of Symposium, Würzburg.Google Scholar
  22. 22.
    Rapthel, I., and Kakuschke, R., 3rd-4th Sept. 1997, Entwicklungen und Eigenschaften von Sconacell A als vollständig abbaubare Kunststoffe auf Basis teilacetylierter Naturstärke. In Werkstoffe aus nachwachsenden Rohstoffen. Conference proceedings of the 1st International Symposium, Rudolstadt. Publishers Thüringisches Institut fiir Textil- und Kunststoff-Forschung e.V., Rudolstadt.Google Scholar
  23. 23.
    N.N., 1997, Bioceta — Biologisch abbaubares Zellulosediacetat. Kunststoff + Kautschuk Produkte 97/98. Yearly Handbook of the Processors, Recycling Companies, Deliverers and Furnishers, Publishing company Darmstadt, pp. 176–177.Google Scholar
  24. 24.
    Eicher, T., and Fischer, W., 1975, Zelluloseester. Ullmanns Enzyklopädie der technischen Chemie. 4th Edition, Volume 9, Publishing company Verlag Chemie, Weinheim, pp. 227–246.Google Scholar
  25. 25.
    Kuhne, K., 29th-30th June 1998, Neue Thermoplaste auf Zellulosebasis. In International Wood and Natural Fibre Composites Symposium. Proceedings of the symposium, Kassel, Publishers Universität Gesamthochschule Kassel, lecture 13.Google Scholar
  26. 26.
    Schack, D., 11 th-12th Feb. 1998, Polyhydroxybutyrat/valerat Copolymere. In Biologisch abbaubare Werkstoffe (BAW). Conference proceedings of the symposium, Würzburg.Google Scholar
  27. 27.
    Scherzer, D., June 1997, Pflanzenfaserverstärkte Polyurethanschäume in industriellen Anwendungsbereichen. In Neue Produkte aus pflanzlichen Fasern. Branchendialog, Mainz, Publishers Bildungsseminar für die Agrarverwaltung Rheinland-Pfalz.Google Scholar
  28. 28.
    Utz, H., 19th-20th Nov. 1992, Bioabbaubare Kunststoffe im Verpackungsbereich. In Biologisch abbaubare Kunststoffe. Conference Proceedings of Symposium No. 16105/56.253, Esslingen.Google Scholar
  29. 29.
    Fritz, H.-G., Seidenstücker, T., Bölz, U., Juza, M., Schroeter, J., and Endres, H.-J, 1994, Study on production of thermoplastics and fibres based on mainly biological materials. EUR 16102, Directorate-General XII Science, Research and Development.Google Scholar
  30. 30.
    Witt, U., Müller, R.-J., and Klein, J., 1997, Biologisch abbaubare Polymere. Study of the Franz-Patat-Zentrums für Polymerforschung e. V., Braunschweig.Google Scholar
  31. 31.
    Herrmann, A. S., Nickel, J., and Riedel, U., 1998, Construction materials based upon biologically renewable resources — from components to finished parts. In Polymer Degradation and Stability 59, pp. 251–261.Google Scholar
  32. 32.
    Riedel, U., and Nickel, J., 1999, Natural fibre-reinforced biopolymers as construction materials — new discoveries. In Die Angewandte Makromolekulare Chemie, 272: 34–40.Google Scholar
  33. 33.
    Riedel, U., 1999, PhD Thesis Entwicklung und Charakterisierung von Faserverbundwerkstoffen auf Basis nachwachsender Rohstoffe. Fortschritt-Berichte VDI, 5, 575.Google Scholar
  34. 34.
    Riedel, U., and Gensewich, C., 1999, Pultrusion von Konstruktionswerkstoffen aus nachwachsenden Rohstoffen. In Die Angewandte Makromolekulare Chemie, 272: 11–16.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Jörg Nickel
    • 1
  • Ulrich Riedel
    • 1
  1. 1.German Aerospace CenterInstitute of Structural MechanicsBraunschweigGermany

Personalised recommendations