Biodegradation of Polymeric Materials

An Overview of Available Testing Methods
  • Maarten Van Der Zee
Chapter

Abstract

This paper presents an overview of the current knowledge on the biodegradability of polymeric materials, in particular in relation to degradation under environmental conditions. The significance of defining ‘biodegradation’ and related terms, and complexities associated with the issue are discussed followed by the different aspects of assessing the potential, the rate, and the degree of biodegradation of polymeric materials. Particular attention is given to the ways for demonstrating complete mineralisation to gasses (such as carbon dioxide and methane), water and possibly microbial biomass. The presented overview of testing methods makes clear that there is no such thing as a single optimal method for determining biodegradation of polymeric materials. First of all, biodegradation of a material is not only determined by the chemical composition and corresponding physical properties; the degradation environment in which the material is exposed also affects the rate and degree of biodegradation. Furthermore, the method or test to be used depends on what information is requested. Therefore, one should always consider why a particular polymeric material should be (or not be) biodegradable when contemplating how to assess its biodegradability.

Keywords

Polymeric Material Anaerobic Digestion Biodegradable Polymer Vinyl Alcohol Biodegradation Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Swift, G., 1992, Biodegradability of polymers in the environment: complexities and significance of definitions and measurements. FEMS Microbiol. Rev. 103, 339–346.CrossRefGoogle Scholar
  2. 2.
    Göpferich, A., 1996, Mechanisms of polymer degradation and erosion. Biomaterials 17: 103–114.CrossRefGoogle Scholar
  3. 3.
    Albertsson, A.-C. and Karlsson, S., 1990, Biodegradation and test methods for environmental and biomedical applications of polymers. In Degradable Materials — Perspectives, Issues and Opportunities (S.A. Barenberg, J.L. Brash, R. Narayan, and A.E. Redpath, eds), The first international scientific consensus workshop proceedings, CRC Press, Boston, pp. 263–286.Google Scholar
  4. 4.
    Palmisano, A.C., and Pettigrew, C.A., 1992, Biodegradability of plastics, consistent methods for testing claims of biodegradability need to be developed. Bioscience 42: 680–685.CrossRefGoogle Scholar
  5. 5.
    Albertsson, A.-C., and Rinby, B., 1979, Biodegradation of synthetic polymers. IV. The i4CO2 method applied to linear polyethylene containing a biodegradable additive. J. Appl. Polym. Sci.: Appl. Polym. Symp. 35: 423–30.Google Scholar
  6. 6.
    Austin, R.G., 1990, Degradation studies of polyolefins. In Degradable Materials - Perspectives, Issues and Opportunities (S.A. Barenberg, J.L. Brash, R. Narayan, and A.E. Redpath, eds), The first international scientific consensus workshop proceedings, CRC Press, Boston, pp. 209–229.Google Scholar
  7. 7.
    Goheen, S.M., and. Wool, R.P., 1991, Degradation of polyethylene starch blends in soil. J. Appl. Polym. Sci. 42: 2691–2701.CrossRefGoogle Scholar
  8. 8.
    Breslin, V.T., 1993, Degradation of starch-plastic composites in a municipal solid waste landfill. J. Environ. Polym. Degrad. 1: 127–141.CrossRefGoogle Scholar
  9. 9.
    Anonymous, 1992, Towards Common Ground. The International Workshop on Biodegradability, Annapolis, Maryland, 20–21 October 1992, Meeting summary.Google Scholar
  10. 10.
    Van der Zee, M., Stoutjesdijk, J.H., Van der Heijden, P.A.A.W. and De Wit, D., 1995, Structure-biodegradation relationships of polymeric materials .1. Effect of degree of oxidation of carbohydrate polymers. J. Environ. Polym. Degrad. 3, 235–242.CrossRefGoogle Scholar
  11. 12.
    Eggink, G., Van der Zee, M., and Sijtsma, L., 1995, Biodegradable polymers from plant materials. International edition of the IOP on Environmental Biotechnology: 7–8.Google Scholar
  12. 13.
    Andrady, A.L., 1994, Assessment of environmental biodegradation of synthetic polymers. J. M. S — Rev. Macromol. Chem. Phys. C34: 25–76.CrossRefGoogle Scholar
  13. 14.
    Mayer, J.M., and Kaplan, D.L., 1993, Biodegradable materials and packaging — Environmental test methods and needs. In: Ching, C., Kaplan, D.L., and Thomas, E.L., eds., Biodegradable Polymers and Packaging. Chapter 16. Technomic Publishing Co. Inc., Lancaster-Basel, 233–245.Google Scholar
  14. 15.
    Tokiwa, Y., and Suzuki, T., 1981, Hydrolysis of copolyesters containing aromatic and aliphatic ester blocks by lipase. J. Appl. Polym. Sci. 26: 441–448.CrossRefGoogle Scholar
  15. 16.
    Tokiwa, Y., Suzuki, T., and Takeda, K., 1986, Hydrolysis of polyesters by Rhizopus arrhizus lipase. Agric. Biol. Chem. 50: 1323–1325.CrossRefGoogle Scholar
  16. 17.
    Arvanitoyannis, I., Nakayama, A., Kawasaki, N., and Yamamoto, N., 1995, Novel polylactides with aminopropanediol or aminohydroxymethylpropanediol using stannous octoate as catalyst — Synthesis, characterization and study of their biodegradability. Polymer 36: 2271–2279.CrossRefGoogle Scholar
  17. 18.
    Nakayama, A., Kawasaki, N., Arvanitoyannis, I., Iyoda, J., and Yamamoto, N., 1995, Synthesis and degradability of a novel aliphatic polyester — Poly(-methyl-valerolactone-co-L-lactide, Polymer 36: 1295–1301.CrossRefGoogle Scholar
  18. 19.
    Walter, T., Augusta, J., Müller, R.-J., Widdecke, H., and Klein, J., 1995, Enzymatic degradation of a model polyester by lipase from Rhizopus delemar. Enzym. Microb. Technol. 17: 218–224.CrossRefGoogle Scholar
  19. 20.
    Nagata, M., Kiyotsukuri, T., Ibuki, H., Tsutsumi, N., and Sakai, W., 1996, Synthesis and enzymatic degradation of regular network aliphatic polyesters. React. Funct. Polym. 30: 165–171.CrossRefGoogle Scholar
  20. 21.
    Jun, H.S., Kim, B.O., Kim, Y.C., Chang, H.N., and Woo, S.I., 1994, Synthesis of copolyesters containing poly(ethylene terephthalate) and poly(-caprolactone) units and their susceptibility to Pseudomonas sp. lipase. J. Environ. Polym. Degrad. 2: 9–18.CrossRefGoogle Scholar
  21. 22.
    Chiellini, E., Corti, A., Giovannini, A., Narducci, P., Paparella, A.M., and Solaro, R., 1996, Evaluation of biodegradability of poly(-caprolactone)/poly(ethylene terephthalate) blends. J. Environ. Polym. Degrad. 4: 37–50.CrossRefGoogle Scholar
  22. 23.
    Nagata, M., Kiyotsukuri, T., Minami, S., Tsutsumi, N., and Sakai, W., 1996, Biodegradability of poly(ethylene terephthalate) copolymers with poly(ethylene glycol)s and poly(tetramethylene glycol). Polym. Int. 39: 83–89.CrossRefGoogle Scholar
  23. 24.
    Nagata, M., and Kiyotsukuri, T., 1994, Biodegradability of copolyesteramides from hexamethylene adipate and hexamethylene adipamide. Eur. Polym. J. 30: 1277–1281.CrossRefGoogle Scholar
  24. 25.
    Nagata, M., 1996, Enzymatic degradation of aliphatic polyesters copolymerized with various diamines. Macromol. Rap. Commun. 17: 583–587.CrossRefGoogle Scholar
  25. 26.
    Arvanitoyannis, I., Nikolaou, E., and Yamamoto, N., 1994, Novel biodegradable copolyamides based on adipic acid, bis(p-aminocyclohexyl) methane and several alpha-amino acids — Synthesis, characterization and study of their degradability for food packaging applications — 4. Polymer 35: 4678–4689.CrossRefGoogle Scholar
  26. 27.
    Arvanitoyannis, I., Nikolaou, E., and Yamamoto, N., 1995, New copolyamides based on adipic acid, aliphatic diamines and amino acids — Synthesis, characterization and biodegradability .5. Macromol. Chem. Phys. 196: 1129–1151.CrossRefGoogle Scholar
  27. 28.
    Matsumura, S., Shimura, Y., Toshima, K., Tsuji, M., and Hatanaka, T., 1995, Molecular design of biodegradable functional polymers .4. Poly(vinyl alcohol) block as biodegradable segment. Macromol. Chem. Phys. 196: 3437–3445.CrossRefGoogle Scholar
  28. 29.
    Glasser, W.G., McCartney, B.K., and Samaranayake, G., 1994, Cellulose derivatives with low degree of substitution .3. The biodegradability of cellulose esters using a simple enzyme assay. Biotechn. Progr. 10: 214–219.CrossRefGoogle Scholar
  29. 30.
    Rivard, C., Moens, L., Roberts, K., Brigham, J., and Kelley, S., 1995, Starch esters as biodegradable plastics — Effects of ester group chain length and degree of substitution on anaerobic biodegradation. Enzym. Microb. Technol. 17: 848–852.CrossRefGoogle Scholar
  30. 31.
    Strantz, A.A., and Zottola, E.A., 1992, Stability of cornstarch-containing polyethylene films to starch-degrading enzymes. J. Food Protect. 55: 736–738.Google Scholar
  31. 32.
    Coma, V., Couturier, Y., Pascat, B., Bureau, G., Cuq, J.L. and Guilbert, S., 1995, Estimation of the biofragmentability of packaging materials by an enzymatic method. Enzyme Microb. Technol. 17: 524–527.CrossRefGoogle Scholar
  32. 33.
    Imam, S.H., Gordon, S.H., Burgess-Cassler, A., and Greene, R.V., 1995, Accessibility of starch to enzymatic degradation in injection-molded starch-plastic composites. J. Environ. Polym. Degrad. 3: 107–113.CrossRefGoogle Scholar
  33. 34.
    Imam, S.H., Gordon, S.H., Shogren, R.L., Greene, R.V., 1995, Biodegradation of starchpoly (-hydroxybutyrate-co-valera.te) composites in municipal activated sludge. J. Environ. Polym. Degrad. 3: 205–213.CrossRefGoogle Scholar
  34. 35.
    Vikman, M., Itävaara, M., and Poutanen, K., 1995, Biodegradation of starch-based materials. J.M.S. - Pure Appl. Chem. A32: 863–866.Google Scholar
  35. 36.
    Vikman, M., Itavaara, M., and Poutanen, K., 1995, Measurement of the biodegradation of starch-based materials by enzymatic methods and composting. J. Environ. Polym. Degrad. 3: 23–29.CrossRefGoogle Scholar
  36. 37.
    ASTM G21, 1996, Standard practice for determining resistance of synthetic polymeric materials to fungi. ASTM standard G21–96. American Society for Testing and Materials (ASTM), Philadelphia (PA), USA.Google Scholar
  37. 38.
    ASTM G22, 1996, Standard practice for determining resistance of plastics of bacteria. ASTMstandard G22–76(1996). American Society for Testing and Materials (ASTM), Philadelphia (PA), USA.Google Scholar
  38. 39.
    ISO 846, 1978, Determination of behaviour under the action of fungi and bacteria — Evaluation of visual examination or measurement of change in mass or physical properties. International Standard ISO 846:1987(E). International Organization for Standardization (ISO), Genève, Switzerland.Google Scholar
  39. 40.
    Seal, K.J., 1994, Test methods and standards for biodegradable plastics. In: Griffin, G.J.L. (ed., Chemistry and Technology of biodegradable polymers. Blackie Academic and Professional, London, 116–134.CrossRefGoogle Scholar
  40. 41.
    Potts, J.E., 1978, Biodegradation. In: Jellinek, H.H.G. (ed., Aspects of degradation and stabilization of polymers. Chapter 14. Elsevier Scientific Publishing Co., Amsterdam, 617–657.Google Scholar
  41. 42.
    Seal, K.J., and Pantke, M., 1986, An interlaboratory investigation into the biodeterioration testing of plastics, with special reference to polyurethanes; Part 1: Petri dish test. Mater. Org. 21: 151–64.Google Scholar
  42. 43.
    Delafield, F.P., Doudoroff, M., Palleroni, N.J., Lusty, C.J., and Contopoulos, R., 1965, Decomposition of poly-beta-hydroxybutyrate by Pseudomonads. J. Bacteriol. 90: 1455–1466.Google Scholar
  43. 44.
    Gould, J.M., Gordon, S.H., Dexter, L.B., and Swanson, C.L., 1990, Biodegradation of starch-containing plastics. In Agricultural and synthetic polymers - Biodegradability and utilization (J.E. Glass, and G. Swift, eds), ACS Symposium Series 433, American Chemical Society, Washington DC, pp. 65–75.CrossRefGoogle Scholar
  44. 45.
    Augusta, J., Müller, R.-J., and Widdecke, H., 1993, A rapid evaluation plate-test for the biodegradability of plastics. Appl. Microbiol. Biotechnol. 39: 673–678.CrossRefGoogle Scholar
  45. 46.
    Nishida, H., and Tokiwa, Y., 1994a, Confirmation of poly(1,3-dioxolan-2-one) degrading microorganisms in environment. Chem. Lett. 3: 421–422.CrossRefGoogle Scholar
  46. 47.
    Nishida, H., and Tokiwa, Y., 1994, Confirmation of anaerobic poly(2-oxepanone) degrading microorganisms in environments. Chem. Lett. 7: 1293–1296.CrossRefGoogle Scholar
  47. 48.
    Crabbe, J.R., Campbell, J.R., Thompson, L., Walz, S.L., Schultz, W.W., 1994, Biodegradation of a colloidal ester-based polyurethane by soil fungi. lnt. Biodeter. Biodegrad. 33: 103–113.CrossRefGoogle Scholar
  48. 49.
    ISO 9408, 1999, Water quality — Evaluation of ultimate aerobic biodegradability of organic compounds in an aqueous medium by determination of oxygen demand in a closed respirometer. International Standard ISO 9408:1999(E), International Organization for Standardization (ISO), Genève, Switzerland.Google Scholar
  49. 50.
    ISO 10708, 1997, Water quality — Evaluation in an aqueous medium of the ‘ultimate’ aerobic biodegradability of organic compounds — Method by determining the biochemical oxygen demand in a two-phase closed bottle test. International Standard ISO 10708:1997, International Organization for Standardization (ISO), Genève, Switzerland.Google Scholar
  50. 51.
    OECD 301D, 1993, Ready biodegradability: Closed Bottle Test — 301 D. Guidelines for testing of chemicals. Organization for Economic Cooperation and Development (OECD), Paris, France.Google Scholar
  51. 52.
    OECD 302C, 1993, Inherent biodegradability: Modified MITI Test (II) - 302 C. Guidelines for testing of chemicals. Organization for Economic Cooperation and Development (OECD), Paris, France.Google Scholar
  52. 53.
    ISO 6060, 1989, Water Quality — Determination of the chemical oxygen demand. International Standard ISO 6060:1989(E). International Organization for Standardization (ISO), Genève, Switzerland.Google Scholar
  53. 54.
    ISO 10707, 1994, Water quality — Evaluation in an aqueous medium of the ‘ultimate’ aerobic biodegradability of organic compounds - Method by analysis of biochemical oxygen demand (closed bottle test, lnternational Standard ISO 10707:1994(E), International Organization for Standardization (ISO), Genève, Switzerland.Google Scholar
  54. 55.
    ISO 14851, 1999, Determination of the ultimate aerobic biodegradability of plastic materials in an aqueous medium — Method by measuring the oxygen demand in a closed respirometer. International Standard ISO 14851:1999(E), International Organization for Standardization (ISO), Genève, Switzerland.Google Scholar
  55. 56.
    prEN 14048, 2000, Packaging — Determination of the ultimate aerobic biodegradability of packaging materials in an aqueous medium — Method by measuring the oxygen demand in a closed respirometer. Draft European Standard prEN 14048:2000, European Committee for Standardization (CEN), Brussels, Belgium.Google Scholar
  56. 57.
    OECD 301F, 1993, Manometric respirometry test. Guidelines for testing of chemicals. Organization for Economic Cooperation and Development (OECD), Paris, France.Google Scholar
  57. 58.
    Tilstra, L., and Johnsonbaugh, D., 1993a, A test method to determine rapidly if polymers are biodegradable. J. Environ. Polym. Degrad. 1: 247–255.CrossRefGoogle Scholar
  58. 59.
    ASTM D5209, 1992, Standard test method for determining the aerobic biodegradation of plastic materials in the presence of municipal sewage sludge. ASTM standard D5209–92. American Society for Testing and Materials (ASTM), Philadelphia (PA), USA.Google Scholar
  59. 60.
    ISO 9439, 1999, Water quality — Evaluation of ultimate aerobic biodegradability of organic compounds in an aqueous medium — Carbon dioxide evolution test. International Standard ISO 9439:1999(E), International Organization for Standardization (ISO), Genève, Switzerland.Google Scholar
  60. 61.
    ISO 14852, 1999, Determination of the ultimate aerobic biodegradability of plastic materials in an aqueous medium - Method by analysis of evolved carbon dioxide. International Standard ISO 14852:1999 (E), International Organization for Standardization (ISO), Genève, Switzerland.Google Scholar
  61. 62.
    prEN 14047, 2000, Packaging — Determination of the ultimate aerobic biodegradability of packaging materials in an aqueous medium — Method by analysis of evolved carbon dioxide. Draft European Standard prEN 14047:2000, European Committee for Standardization (CEN), Brussels, Belgium.Google Scholar
  62. 63.
    OECD 301B, 1993, Ready biodegradability: Modified Sturm test — 301 B. Guidelines for testing of chemicals. Organization for Economic Cooperation and Development (OECD), Paris, France.Google Scholar
  63. 64.
    ASTM D5338, 1998, Standard test method for determining aerobic biodegradation of plastic materials under controlled composting conditions. ASTM Standard D5338–98-e1. American Society for Testing and Materials (ASTM), Philadelphia (PA), USA.Google Scholar
  64. 65.
    ISO 14855, 1999, Determination of the ultimate aerobic biodegradability and disintegration of plastics under controlled composting conditions — Method by analysis of evolved carbon dioxide. International Standard 14855:1999(E), International Organization for Standardization (ISO), Genève, Switzerland.Google Scholar
  65. 65.
    prEN 14046, 2000, Packaging — Determination of the ultimate aerobic biodegradability and disintegration of packaging materials under controlled composting conditions - Method by measuring analysis of evolved carbon dioxide. Draft European Standard prEN 14046:2000, European Committee for Standardization (CEN), Brussels, Belgium.Google Scholar
  66. 66.
    ASTM D5210, 1992, Standard test method for determining the anaerobic biodegradation of plastic materials in the presence of municipal sewage sludge. ASTM standard D5210–92. American Society for Testing and Materials (ASTM), Philadelphia (PA), USA.Google Scholar
  67. 67.
    ISO 11734, 1995, Water quality — Evaluation of the ‘ultimate’ anaerobic biodegradability of organic compounds in digested sludge — Method by measurement of the biogas production. International Standard ISO 11734:1995(E). International Organization for Standardization (ISO), Genève, Switzerland.Google Scholar
  68. 68.
    ASTM D5511, 1994, Standard Test Method for Determining the Anaerobic Biodegradation of Plastic Materials under high-solids anaerobic-digestion conditions. ASTMstandard D5511–94. American Society for Testing and Materials (ASTM), Philadelphia (PA), USA.Google Scholar
  69. 69.
    Day, M., Shaw, K., and Cooney, J.D., 1994, Biodegradability: an assessment of commercial polymers according to the Canadian method for anaerobic conditions. J. Environ. Polym. Degrad. 2: 121–127.CrossRefGoogle Scholar
  70. 70.
    Puechner, P., Mueller, W.-R., and Bardtke, D., 1995, Assessing the biodegradation potential of polymers in screening- and long-term test systems. J. Environ. Polym. Degrad. 3, 133–143.CrossRefGoogle Scholar
  71. 71.
    Bartha, R., and Yabannavar, A., 1995, Methods of assessment of the biodegradation of polymers in soil. Fourth international workshop on biodegradable plastics and polymers and fourth annual meeting of the Bio-Environmentally Degradable Polymer Society, October 11–14, Durham, New Hampshire, USA.Google Scholar
  72. 72.
    Andrady, A.L., Pegram, J.E., and Tropsha, Y., 1993, Changes in carbonyl index and average molecular weight on embrittlement of enhanced-photodegradable polyethylenes. J. Environ. Polym. Degrad. 1: 171–180.CrossRefGoogle Scholar
  73. 73.
    Yabannavar, A., and Bartha, R., 1993, Biodegradability of some food packaging materials in soil. Soil Biol. Biochem. 25: 1469–1475.CrossRefGoogle Scholar
  74. 74.
    Yabannavar, A.V., and Bartha, R., 1994, Methods for assessment of biodegradability of plastic films in soil. Appl. Environ. Microbiol. 60: 3608–3614.Google Scholar
  75. 74a.
    Swift, G., 1995, Opportunities for environmentally degradable polymers. J. M. S. — Pure Appl.Chem. A32: 641–651.Google Scholar
  76. 75.
    Urstadt, S., Augusta, J., Müller, R.-J., and Deckwer, W.-D., 1995, Calculation of carbon balances for evaluation of the biodegradability of polymers. J. Environ. Polym. Degrad. 3, 121–131.CrossRefGoogle Scholar
  77. 76.
    Itävaara, M., and Vikman, M., 1995, A simple screening test for studying the biodegradability of insoluble polymers. Chemosphere 31: 4359–4373.CrossRefGoogle Scholar
  78. 77.
    Spitzer, B., Mende, C., Menner, M., and Luck, T., 1996, Determination of the carbon content of biomass - a prerequisite to estimate the complete biodegradation of polymers. J. Environ. Polym. Degrad. 4: 157–171.CrossRefGoogle Scholar
  79. 78.
    Allen, A.L., Mayer, J.M., Stote, R., and Kaplan, D.L., 1994, Simulated marine respirometry of biodegradable polymers. J. Environ. Polym. Degrad. 2: 237–244.CrossRefGoogle Scholar
  80. 79.
    Courtes, R., Bahlaoui, A., Rambaud, A., Deschamps, F., Sunde, E., and Dutriex, E., 1995, Ready biodegradability test in seawater — A new methodological approach. Ecotox. Environ. Saf. 31: 142–148.CrossRefGoogle Scholar
  81. 80.
    Barak, P., Coquet, Y., Halbach, T.R.. and Molina, J.A.E., 1991, Biodegradability of polyhydroxybutyrate (co-hydroxyvalerate) and starch-incorporated polyethylene plastic films in soils. J. Environ. Qual. 20: 173–179.CrossRefGoogle Scholar
  82. 81.
    Pagga, U., Beimborn, D.B., Boelens J., and De Wilde, B., 1995, Determination of the aerobic biodegradability of polymeric material in a laboratory controlled composting test. Chemosphere 31: 4475–4487.CrossRefGoogle Scholar
  83. 82.
    Pagga, U., Beimborn, D.B., and Yamamoto, M., 1996, Biodegradability and compostability of polymers — Test methods and criteria for evaluation. J. Environ. Polym. Degrad. 4: 173–178.CrossRefGoogle Scholar
  84. 83.
    Tosin, M., Degli-Innocenti, F. and Bastioli, C., 1998, Detection of a toxic product released by a polyurethane-containing film using a composting test method based on a mineral bed. J. Environ. Polym. Degr. 6: 79–90.CrossRefGoogle Scholar
  85. 84.
    Bellia, G., Tosin, M., Floridi, G. and Degli-Innocenti, F., 1999, Activated vermiculite, a solid bed for testing biodegradability under composting conditions. Polym. Degrad. Stabil. 66: 65–79.CrossRefGoogle Scholar
  86. 85.
    Albertsson, A.-C., Barenstedt, C., and Karlsson, S., 1993, Increased biodegradation of a low-density polyethylene (LDPE) matrix in starch-filled LDPE materials. J. Environ. Polym. Degrad. 1: 241–245.CrossRefGoogle Scholar
  87. 86.
    Komarek, R.J., Gardner, R.M., Buchanan, C.M., and Gedon, S., 1993, Biodegradation of radiolabeled cellulose acetate and cellulose propionate. J. Appl. Polym. Sci. 50: 1739–1746.CrossRefGoogle Scholar
  88. 87.
    Buchanan, C.M., Dorschel, D., Gardner, R.M., Komarek, R.J., Matosky, A.J., White, A.W. and Wood, M.D., 1996, The influence of degree of substitution on blend miscibility and biodegradation of cellulose acetate blends. J. Environ. Polym. Degrad. 4, 179–195.CrossRefGoogle Scholar
  89. 88.
    OECD 303A, 1993, Simulation test — Aerobic sewage treatment: Coupled Units Test — 303 A. Guidelines for testing of chemicals. Organization for Economic Cooperation and Development (OECD), Paris, France.Google Scholar
  90. 89.
    Krupp, L.R., and Jewell, W.J., 1992, Biodegradability of modified plastic films in controlled biological environments. Environ. Sci. and Technol. 26: 193–198.CrossRefGoogle Scholar
  91. 90.
    Kaplan, D.L., Mayer, J.M., Greenberger, M., Gross, R., and McCarthy, S., 1994, Degradation methods and degradation kinetics of polymer films. Polym. Degrad. Stab. 45: 2 165–172.CrossRefGoogle Scholar
  92. 91.
    Dale, R., and Squirrell, D.J., 1990, A rapid method for assessing the resistance of polyurethanes to biodeterioration. Int. Biodeterior. 26: 355–67.CrossRefGoogle Scholar
  93. 92.
    Seal, K.J., and Pantke, M., 1990, An interlaboratory investigation into the biodeterioration testing of plastics, with special reference to polyurethanes; Part 2: Soil burial tests.. Mater. Org. 25: 87–98.Google Scholar
  94. 93.
    Gardner, R.M., Btuichanan, C.M., Komarek, R., Dorschel, D., Boggs, C., and White, A.W., 1994, Compostability of cellulose acetate films. J. Appl. Polym. Sci. 52, 1477–1488.CrossRefGoogle Scholar
  95. 94.
    Buchanan, C.M., Dorschel, D.D., Gardner, R.M., Komarek, R.J., and White, A.W., 1995, Biodegradation of cellulose esters — composting of cellulose ester diluent mixtures. J. M. S. — Pure Appl. Chem. A32: 683–697.Google Scholar
  96. 95.
    Gross, R.A., Gu, J.-D., Eberiel, D., and McCarthy, S.P., 1995, Laboratory-scale composting test methods to determine polymer biodegradability — Model studies on cellulose acetate. J.M.S. — Pure Appl. Chem. A32, 613–628.Google Scholar
  97. 96.
    prEN 14045, 2000, Packaging — Evaluation of the disintegration of packaging materials in practical oriented tests under defined composting conditions. Draft European Standard prEN 14045:2000, European Committee for Standardization (CEN), Brussels, Belgium.Google Scholar
  98. 97.
    Smith, G.P., Press, B., Eberiel, D., McCarthy, S.P., Gross, R.A., Kaplan, D.L., 1990, An accelerated in-laboratory test to evaluate the degradation of plastics in landfill environments. Polym. Mater. Sci. Eng. 63: 862–866.Google Scholar
  99. 98.
    Coma, V., Couturier, Y., Pascat, B., Bureau, G., Guilbert, S., and Cuq, J.L., 1994, Estimation of the biodegradability of packaging materials by a screening test and a weight-loss method. Pack. Techn. Sci., 7: 27–37.CrossRefGoogle Scholar
  100. 99.
    Buchanan, C.M., Boggs, C.N., Dorschel, D., Gardner, R.M., Komarek, R.J., Watterson, T.L., and White, A.W., 1995, Composting of miscible cellulose acetate propionate-aliphatic polyester blends. J. Environ. Polym. Degrad. 3: 1–11.CrossRefGoogle Scholar
  101. 100.
    Goldberg, D., 1995, A review of the biodegradability and utility of poly(caprolactone, J. Environ. Polym. Degrad. 3: 61–67.CrossRefGoogle Scholar
  102. 101.
    Innotti, G., Fair, N., Tempesta, M., Neibling, H., Hsieh, F.H., and Mueller, M., 1990, Studies on the environmental degradation of starch-based plastics. In Degradable Materials — Perspectives, Issues and Opportunities (S.A. Barenberg, J.L. Brash, R. Narayan, and A.E. Redpath, eds), The first international scientific consensus workshop proceedings, CRC Press, Boston, pp. 425–439.Google Scholar
  103. 102.
    Mergaert, J., Webb, A., Anderson, C., Wouters, A., and Swings, J., 1993, Microbial degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in soils. Appl. Environ. Microbiol. 59: 3233–3238.Google Scholar
  104. 103.
    Tilstra, L., and Johnsonbaugh, D., 1993, The biodegradation of blends of polycaprolactone and polyethylene exposed to a defined consortium of fungi. J. Environ. Polym. Degrad. 1: 257–267.CrossRefGoogle Scholar
  105. 104.
    Hu, D.S.G., and Liu, H.J., 1994, Structural analysis and degradation behavior in polyethylene glycol poly (1-lactide) copolymers. J. Appl. Polym. Sci. 51: 473–482.CrossRefGoogle Scholar
  106. 105.
    Greizerstein, H.B., Syracuse, J.A., and Kostyniak, P.J., 1993, Degradation of starch modified polyethylene bags in a compost field study. Polym. Degrad. Stab. 39: 251–259.CrossRefGoogle Scholar
  107. 106.
    Lopez-Llorca, L.V., and Colom Valiente, M.F., 1993, Study of biodegradation of starch-plastic films in soil using scanning electron microscopy. Micron 24: 457–463.CrossRefGoogle Scholar
  108. 107.
    Nishida, H., and Tokiwa, Y., 1993, Distribution of poly(3-hydroxybutyrate) and poly(-caprolactone) aerobic degrading microorganisms in different environments. J. Environ. Polym. Degrad. 1: 227–233.CrossRefGoogle Scholar
  109. 108.
    Bastioli, C., Cerutti, A., Guanella, I., Romano, G.C., and Tosin, M., 1995, Physical state and biodegradation properties of starch-polycaprolactone systems. J. Environ. Polym. Degrad. 3: 81–95.CrossRefGoogle Scholar
  110. 109.
    Kay, M.J., McCabe, R.W., and Morton, L.H.G., 1993, Chemical and physical changes occurring in polyester polyurethane during biodegradation. Int. Biodeter. Biodegrad. 31: 209–225.CrossRefGoogle Scholar
  111. 110.
    Allen, N.S., Edge, M., Mohammadian, M., and Jones, K., 1994, Physicochemical aspects of the environmental degradation of poly(ethylene terephthalate, Polym. Degrad. Stab. 43: 229–237.CrossRefGoogle Scholar
  112. 111.
    Löfgren, A., and Albertsson, A.-C., 1994, Copolymers of 1,5-dioxepan-2-one and L-dilactide or D,L- dilactide — hydrolytic degradation behavior. J. Appl. Polym. Sci. 52: 1327–1338.CrossRefGoogle Scholar
  113. 112.
    Albertsson, A.-C., and Karlsson, S., 1995, New tools for analysing degradation. Macromol. Symp. 98: 797–801.CrossRefGoogle Scholar
  114. 113.
    Schurz, J., Zipper, P., and Lenz, J., 1993, Structural studies on polymers as prerequisites for degradation. J. M. S. — Pure Appl. Chem. A30: 603–619.Google Scholar
  115. 114.
    Albertsson, A.-C., Barenstedt, C., and Karlsson, S., 1994, Degradation of enhanced environmentally degradable polyethylene in biological aqueous media — Mechanisms during the 1st stages. J. Appl. Polym. Sci. 51: 1097–1105.CrossRefGoogle Scholar
  116. 115.
    Santerre, J.P., Labow, R.S., Duguay, D.G., Erfle, D., and Adams, G.A., 1994, Biodegradation evaluation of polyether and polyester-urethanes with oxidative and hydrolytic enzymes. J. Biomed. Mat. Res. 28: 1187–1199.CrossRefGoogle Scholar
  117. 116.
    Iwamoto, A., and Tokiwa, Y., 1994, Enzymatic degradation of plastics containing polycarprolactone. Polym. Degrad. Stab. 45: 205–213.CrossRefGoogle Scholar
  118. 117.
    Leonas, K.K., Cole, M.A., and Xiao, X.-Y., 1994, Enhanced degradable yard waste collection bag behaviour in a field scale composting environment. J. Environ. Polym. Degrad. 2: 253–261.CrossRefGoogle Scholar
  119. 118.
    DIN 54900, 1998, Testing of the compostability of polymeric materials. Entwurf Deutsche Norm DIN 54900. Deutsches Institut fur Normung e.V. (DIN), Berlin, Germany.Google Scholar
  120. 119.
    Mochizuki, M., Hirano, M., Kanmuri, Y., Kudo, K., and Tokiwa, Y., 1995, Hydrolysis of polycaprolactone fibers by lipase — Effects of draw ratio on enzymatic degradation. J. Appl. Polym. Sci. 55: 289–296.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Maarten Van Der Zee
    • 1
  1. 1.Department Polymers, Composites and AdditivesATO, BU Renewable ResourcesWageningenThe Netherlands

Personalised recommendations