Preparation of Dextran-Based Macromolecular Chelates for Magnetic Resonance Angiography

  • Maria G. Duarte
  • Carlos F. G. C. Geraldes
  • Joop A. Peters
  • Maria H. Gil


The preparation of macromolecular conjugates of dextran, which could be used in the design of in perfusion contrast agents for Magnetic Resonance Angiography (MRA), is described. In a first step, an amino group was introduced in the diethylenetriamine pentaacetic acid (DTPA) structure, in order to obtain a complex with one linking group. The derivatized DTPA was characterized by NMR, and subsequently covalently linked to dextran using carbonyldiimidazole (CDI) as an activating agent. The degree of substitution of macromolecular conjugates of dextran can be tuned by the molar ratio of CDI/dextran applied.


Magnetic Resonance Angiography Diethylenetriamine Pentaacetic Acid Anomeric Proton Molecular Weight Complex Gadolinium Diethylenetriaminepentaacetic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lauffer, R.B., 1987, Paramagnetic metal complexes as water proton relaxation agents for NMR imaging. Chem. Rev., 87(5): 901–927CrossRefGoogle Scholar
  2. 2.
    Peters, J.A., Huskens, J. and Raber, D.J., 1996, Lanthanide induced shifts and relaxation rate enhacements. Progr. Magn. Reson. Spectrosc., 28(3/4): 283–350CrossRefGoogle Scholar
  3. 3.
    Aime, S., Botta, M., Fasano, M. and Terreno, E., 1998, Lanthanide (III) chelates for NMR biomedical applications. Chem. Soc. Rev., 27(1): 19–29CrossRefGoogle Scholar
  4. 4.
    Caravan, P., Ellison, J. J., McMurry, T. J. and Lauffer, R.B., 1999, Gadolinium (III) chelates as MRI contrast agents: Structure, dynamics and applications. Chem. Rev., 99(9): 2293–2352CrossRefGoogle Scholar
  5. 5.
    Armitage, F. E., Richardson, D. E. and Li, K. C. P., 1990, Polymeric contrast agents for magnetic resonance imaging. Synthesis and characterization of gadolinium diethylenetriaminepentaacetic acid conjugated to polysaccharides. Bioconjugate Chem., 1(6): 365–374CrossRefGoogle Scholar
  6. 6.
    Meyer, D., Schaefer, M., Bouillot, A., Beaute, S. and Chambon, C., 1991, Paramagnetic dextrans as magnetic resonance contrast agents. Invest. Radiol., 26: S50–52CrossRefGoogle Scholar
  7. 7.
    Rongved, P. and Klaveness, J., 1991, Water-soluble polysaccharides as carriers of paramagnetic contrast agents for magnetic resonance imaging: Synthesis and relaxation properties. Carbohydr. Res., 214: 315–323CrossRefGoogle Scholar
  8. 8.
    Rongved, P., Lindberg, B. and Klaveness, J., 1991, Cross-linked, degradable starch microspheres as carriers of paramagnetic contrast agents for magnetic resonance imaging: Synthesis, degradation and relaxation properties. Carbohydr. Res., 214: 325–330CrossRefGoogle Scholar
  9. 9.
    Rongved, P., Fritzell, T. H., Strande, P. and Klaveness, J., 1996, Polysaccharides as carriers for magnetic resonance imaging contrast agents: synthesis and stability of a new amino acid linker derivative. Carbohydr. Res., 287: 77–89CrossRefGoogle Scholar
  10. 10.
    Corot, C., Schaefer, M., Beauté, S., Bourrinet, P., Zehaf, S., Bénizé, V., Sabatou, M. and Meyer, D., 1997, Physical, chemical and biological evaluations of CMD-A2-Gd-DOTA. Acta Radiol., 38(S412): 91–99.Google Scholar
  11. 10a.
    C. Corot, M. Schaefer, S. Beauté, P. Bourrinet, S. Zehaf, V. Bénizé, M. Sabatou, and D. Meyer, Acta Radiol., 38 (1997) S412, 91.Google Scholar
  12. 11.
    Rebizak, R., Schaefer, M. and Dellacherie, E., 1997, Polymeric conjugates of Gd3+ diethylenetriamine pentaacetic acid and dextran 1. Synthesis, characterization and paramagnetic properties. Bioconjug. Chem., 8(4): 605–610CrossRefGoogle Scholar
  13. 12.
    Rebizak, R., Schaefer, M. and Dellacherie, E., 1998, Polymeric conjugates of Gd3+ diethylenetriamine pentaacetic acid and dextran 2. Influence of spacer arm length and conjugate molecular mass on the paramagnetic properties and some biological parameters. Bioconjug. Chem., 9: 94–99CrossRefGoogle Scholar
  14. 13.
    Lauffer, R. B. and Brady, T. J., 1985, Preparation and water relaxation properties of proteins labeled with paramagnetic metal chelates. Magn. Reson. Imaging 3(1): 11–16CrossRefGoogle Scholar
  15. 14.
    Schmiedel, U., Ogan, M., Paajanen, H., Marotti, M., Crooks, L. E., Brito, A. C. and Brash, R. C., 1987, Albumin labeled with gadolinium-DTPA as an intravascular blood pool enhancing agent for MR imaging: biodistribution and imaging studies. Radiology, 162(1): 205–210Google Scholar
  16. 15.
    Fossheim, S. L., Kellar, K.E., Minsson, S., Collet, J.M., Rongved, P., Fahlvik, A.K. and Klaveness, J., 1999, Investigation of lanthanide-based starch particles as a model system for liver contrast agents. J. Magn. Reson. Imaging, 9: 295–303CrossRefGoogle Scholar
  17. 16.
    Sieving, P. F., Watson, A. D., Rocklage, S. M., 1990, Preparation and characterization of paramagnetic polychelates and their protein conjugates. Bioconjug. Chem., 1: 65–71CrossRefGoogle Scholar
  18. 17.
    Schuhmann-Giampieri, G., Schmitt-Willich, H., Frenzel, T., Press, W. R. and Weinmann H. J., 1991, In vivo and in vitro evaluation do Gd-DTPA-polylysine as a macromolecular contrast agent for magnetic resonance imaging. Invest. Radiol., 26 (11): 969–974CrossRefGoogle Scholar
  19. 18.
    Spanoghe, M., Lanens, D., Dommisse, R., Van der Linden, A. and Alderweireldt, F., 1992, Proton relaxation enhancement by means of serum albumin and poly-lysine labeled with DTPA-Gd3+: relaxivities as a function of molecular weight and conjugation efficiency. Magn. Reson. Imaging 10(6): 913–917CrossRefGoogle Scholar
  20. 19.
    Desser, T. S., Rubin, D. L., Muller, H. H., Qing, F., Khodor, S., Zanazzi, G., Young, S. W., Ladd, D.L., Wellons, J. A., Kellar, K. E., Toner, J., and Snow, R., 1994, Dynamics of tumor imaging with Gd-DTPA-polyethylene glycol polymers: dependence on molecular weight. J. Magn. Reson. Imaging, 4(3): 467–472CrossRefGoogle Scholar
  21. 20.
    Aime, S., Botta, M., Crich, S.G., Giovenzana, G., Palmisano, G. and Sisti, M., 1999, Novel paramagnetic macromolecular complexes derived from the linkage of a macrocyclic Gd(III) complex to polyamino acids through a squaric acid moiety. Bioconj. Chem., 10: 192–199CrossRefGoogle Scholar
  22. 21.
    Krejcarek, G. E. and Tucker, K. L., 1977, Covalent attachment of chelating groups to macromolecules Biochem. Biophys. Res. Commun., 77: 581–585CrossRefGoogle Scholar
  23. 22.
    J. F. Carvalho, S. P. Crofts, J. Vadarojan, 1992, Peptide linkage-containing macrocyclic compounds methods for their preparation, and their use as chelating agents in pharmaceuticals or diagnostic agents containing said chelating agents, in detoxification agents or tomagraphic imaging agents. PCT Int. Appl. WO 92 08,707Google Scholar
  24. 23.
    Geraldes, C. F. G. C., Urbano, A. M., Alpoim, M. C., Sherry, A. D., Kuan, K.-T., Rajagopalan, R., Matos, F. and Muller, R. N., 1995, Preparation, physico-chemical characterization, and relaxometry studies of various gadolinium(III)-DTPA-bis(amide) derivatives as potential magnetic resonance contrast agents. Magn. Reson. Imaging 13(3): 401–420CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Maria G. Duarte
    • 1
  • Carlos F. G. C. Geraldes
    • 1
  • Joop A. Peters
    • 2
  • Maria H. Gil
    • 3
  1. 1.Department of BiochemistryUniversity of CoimbraPortugal
  2. 2.Laboratory of Applied Organic Chemistry and CatalysisDelft University of TechnologyThe Netherlands
  3. 3.Department of Chemical EngineeringUniversity of CoimbraPortugal

Personalised recommendations