Controlled Synthesis of Biodegradable Polyesters

  • Pieter J. Dijkstra
  • Zhiyuan Zhong
  • Wim M. Stevels
  • Jan Feijen
Chapter

Abstract

The application of new initiators for the ring-opening polymerization of cyclic esters has markedly improved the macromolecular engineering of biodegradable polyesters. A wide variety of complex macromolecular architectures can nowadays be prepared using these initiators. Decisive factors in achieving this are the range of monomers that can be polymerized, and the favourable rates of polymerization obtained for these monomers. The number of papers dealing with the exciting synthetic aspects of these initiators is rapidly increasing. A historic overview of the developments in this area is presented in this paper.

Keywords

Aluminium Isopropoxide Cyclic Ester Stannous Octoate Aluminium Alkoxide Macromolecular Architecture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stapert, H.R., Dijkstra, P.J., and Feijeri, J., 1996, Polymer Products and Waste Management, (Smits, M. ed.), International Books: Utrecht, The Netherlands, pp 71–106Google Scholar
  2. 2.
    Swarc, M., and Beylen, van M., 1993, Ionic Polymerization and Living Polymers, Chapman & Hall, New YorkCrossRefGoogle Scholar
  3. 3.
    Hsieh, H.L., and Quirk, R.P, 1996, Anionic Polymerization: Principles and Practical Applications, Marcel Dekker, New YorkGoogle Scholar
  4. 4.
    A number of reviews by various authors can b-e found 1989, in Comprehensive’Polymer Science, (Eastmond, G.C., Ledwith, A., Russo, S., Sigwalt, P. eds), Pergamon Press: New York, Vol. 3, pp. 365–578Google Scholar
  5. 5.
    Kennedy, J.P., and Ivan, B. 1991, Designed Polymers by Carbocationic Macromolecular Engineering, Oxford University Press: New YorkGoogle Scholar
  6. 6.
    Matyjaszewski, K. 1996, Cationic Polymerizations: Mechanism, Synthesis and Applications, Marcel Dekker: New YorkGoogle Scholar
  7. 7.
    A number of reviews by various authors can be found 1989, In Comprehensive Polymer Science, (Eastmond, G.C., Ledwith, A., Russo, S., Sigwalt, P. eds), Pergamon Press: New York, pp. 579–851Google Scholar
  8. 8.
    Veregin, R.P.N., Odell, P.G., Michalak, L.M., and Georges, M.K., 1996, Molecular Weight Distributions in Nitroxide-Mediated Living Free Radical Polymerization: Kinetics of the Slow Equilibria between Growing and Dormant Chains, Macromolecules, 29: 3346CrossRefGoogle Scholar
  9. 9.
    Sogah, D.Y., Hertler, W.R., Webster, O.W., and Cohen, G.M., 1987, Group Transer Polymerization. Polymerization of Acrylic Monomers, Macromolecules, 20: 1473CrossRefGoogle Scholar
  10. 10.
    Grubbs, R.H., and Tumas, W., Polymer Synthesis and Organotranstion Metal Chemistry. 1989, Science, 243: 907CrossRefGoogle Scholar
  11. 11.
    Lebedev, B.V., and Estropov, A.A., 1982, Thermodynamics of the Polymerization of Lactones. Dokl. Phys. Chem., 264: 334Google Scholar
  12. 12.
    Lebedev, B.V., Estropov, A., Kiparisova, G., and Belov, V.I., Thermodynamics of the Glycolide, Polyglycolide and Glycolide Polymerization process in the 0–550 °K.1978 Vysokomol. Soedin., A20: 1297Google Scholar
  13. 13.
    Duda, A., and Penczek, S., 1990, Thermodynamics of L-Lactide Polymerization. Equilibrium Monomer Concentration. Macromolecules, 23: 1636CrossRefGoogle Scholar
  14. 14.
    Vert, M., Schwarch, G., and Coudane, J., 1995, J. Mater. Sci., Pure Appl. Chem., A32: 787Google Scholar
  15. 15.
    Vert, M., Li, S.M., Spenlehauer, G., and Guerin, P., Bioresotbability and Biocompatability of Aliphatc Polyesters. 1992, J. Mater. Sci.: Mater. in Med., 3: 432CrossRefGoogle Scholar
  16. 16.
    Kricheldorf, H.R., and Kreiser-Saunders, I., Polylactones 31. Sn (II)octoate-initiated Polymerization of L-Lactide. A Mechanistic Study. 1995, Boettcher, C. Polymer, 36: 1253CrossRefGoogle Scholar
  17. 17.
    Veld, in’t P.J.A., Velner, E.M., Witte, van P., Hamhuis, J., Dijkstra, P.J., and Feijen, J., 1997, Melt Block Copolymerization of ε-Caprolactone and L-Lactide. J. Pol. Sci. A: Pol. Chem., A 35: 219CrossRefGoogle Scholar
  18. 18.
    Zhang, X., Macdonald, D.A., and Goossen, M.F.A., Mcauley, K.B. Mechanism of Lactide Polymerization in the Presence of Stannous octoate: The Effect of Hydroxy and Carboxylic Acid Substances. 1994, J. Pol. Sci. A: Pol. Chem., 32: 2965CrossRefGoogle Scholar
  19. 19.
    Nijenhuis, A.J., Grijpma, D.W., and Pennings, A.J., 1992, Electrochemical and Chemical Syntheses of Poly(thiophenes) Containing Oligo(oxyethylene) Substituents, Macromolecules, 25: 6419CrossRefGoogle Scholar
  20. 20.
    Grijpma, D.W., and Pennings, A.J., Polymerization Temperature Effects on the Properties of L-Lactide and c-Caprolactone copolymers. 1991, Pol. Bull., 25: 335CrossRefGoogle Scholar
  21. 21.
    Ouhadi, T., Stevens, C., and Teyssié, P., Mechanism of ε-Caprolactone Polymerization of Aluminum Alkoxides. 1975, Makromol. Chem., Suppl. 1: 191CrossRefGoogle Scholar
  22. 22.
    Duda, A., and Penczek, S., Of the Difference of Reactivities of Various Aggregated Forms of Aluminum Triisopropoxide in Initiating Ring-Opening Polymerizations. 1995, Macromol. Rapid Commun., 16: 67CrossRefGoogle Scholar
  23. 23.
    Jacobs, C., Dubois, P., Jérôme, R., and Teyssié, P, 1991, Macromolecular Engineering of Polylactones and Polylactides. 5. Synthesis and Characterization of Diblock Copolymers based on Poly-e-caprolactone and Poly(l,l or dl)lactide by Aluminium Alkoxides. Macromolecules, 24: 3027CrossRefGoogle Scholar
  24. 24.
    Kricheldorf, H.R., Berl, M., and Scharnagl, N., 1988, Poly(lactones). 9. Polymerization Mechanism of Metal Alkoc\xide Initiated Polymerizations of Lactide and Various Lactones. Macromolecules, 21: 286CrossRefGoogle Scholar
  25. 25.
    Shiner, V.J., Whittaker, D., and Fernandez, V.P., 1963, J. Am. Chem. Soc., 85: 2318.CrossRefGoogle Scholar
  26. 26.
    Duda, A., and Penczek, S, 1995, Polymerization of ε-Caprolactone Initiated by Aluminum Isopropoxide Trimer and-or Tetramer. Macromolecules, 28, 5981CrossRefGoogle Scholar
  27. 27.
    Yasuda, T., Aida, T., and Inoue, S,. Reactivity of (Porphinato)Aluminum Phenoxide and Alkoxide as Active Initiators for Polymerization of Epoxide and Lactone. 1986, Bull. Chem. Soc. Jpn., 59: 3931CrossRefGoogle Scholar
  28. 28.
    Endo, M., Aida, T., and Inoue, S., 1987, “Immortal” Polymerization of ε-Caprolactone Initiated by Aluminium Pophyrin in the presence of Alcohol. Macromolecules, 20: 2982CrossRefGoogle Scholar
  29. 29.
    Shimasaki, K., Aida, T., and Inoue, S., 1987, Living Polymerization of δ-Valerolactone with Aluminium Porphyrin. Trimolecular Mechanism by the Participation of Two Aluminium Porphyrin Molecules. Macromolecules, 20: 3076CrossRefGoogle Scholar
  30. 30.
    Sugimoto, H., Aida, T., and Inoue, S., 1993, Organoboron Compounds as Lewis Acid Accelerators for the Aluminum Porphyrin-Mediated Living Anionic Polymerization of Methyl Methacrylate. Macromolecules, 26: 4751CrossRefGoogle Scholar
  31. 31.
    Sugimoto, H., Aida, T., and Inoue, S,. 1994, Lewis Acid-Promoted Living Anionic Polymerization of Alkyl Methacrylates Initiated with Aluminum Porphyrins. Importance of Steric Balance between a Nucleophile and a Lewis Acid, Macromolecules, 27: 3672CrossRefGoogle Scholar
  32. 32.
    Sugimoto, H., Saika, M., Hosokawa, Y., Aida, T., and Inoue, S., 1996, Accelerated Living Polymerization of Methacrylonitrile with Aluminum Porphyrin Initiators by Activation of Monomer or Growing Species. Controlled Synthesis and Properties of Poly(methyl methacrylate-b-methacrylonitrile)s, Macromolecules, 29: 3359CrossRefGoogle Scholar
  33. 33.
    Dubois, P., Jacobs, C., Jérôme, R., and Teyssié, P., 1991, Macromolecular engineering of Polylactones and Polylactides. 4. Machanism and Kinetics of Lactide Homopolymerization by Aluminium Isopropoxide. Macromolecules, 24: 226634.Google Scholar
  34. 33a.
    Tromifoff, L., Aida, T., and Inoue, S., Formation of Poly(lactide) with controlled Molecular Weight. Polymerization of Lactide by Aluminum Porhyrin. 1987, Chem. Lett., 991: ppGoogle Scholar
  35. 35.
    Dubois, P., Jérôme, R., and Teyssié, P., 1991, Macromolecular Engineering of Polylactones and Polylactides. 3. Synthesis, Characterizaion, and Application of Poly(ε-caprolactone) Macromonomers. Macromolecules, 24: 977CrossRefGoogle Scholar
  36. 36.
    Barakat, I., Dubois, P., Jérôme, R., Teyssié, P., and Goethals, E., Macromolecular Engineering of Polyesters and Polylactones XV. Poly(D,L-lactideMacromonomers and Precursors of Biocompatible Graft Copolymer and Bioerodible Gels. 1994, J. Pol. Sci.: A: Pol. Chem., 32: 2099CrossRefGoogle Scholar
  37. 37.
    Barakat, I., Dubois, P., Grandfils, C., and Jérome, R., Macromolecular Engineering of Polyesters and Polylactones XXI: Controlled Synthesis of Low Molecular Weight Polylactide Macromonomers. 1996, J. Pol. Sci.: A: Pol. Chem., 34: 497CrossRefGoogle Scholar
  38. 38.
    Sawhney, A.S., Pathak, C.P., and Hubell, J.A., 1993, Bioerodible Hydrogels Based on Photopolymerized Poly(ethylene glycol)-co-poly(a-hydroxy acid) Diacrylate Macromers. Macromolecules, 26: 581CrossRefGoogle Scholar
  39. 39.
    Bachari, A., Bélorgy, G., Hélary, G., and Sauvet, G., Synthesis and Chnracterization of Multiblock Copolymers poly[poly(L-lactide)-block-poly-dimethylsiloxane] . 1995, Macromol. Chem. Phys., 196: 411CrossRefGoogle Scholar
  40. 40.
    Degée, P., Dubois, P., Jérôme, R., and Teyssié, P., 1992, Macromolecular Engineering of Polylactones and Polylactides. 9. Synthesis, Characterization, and Application of w-Primary Amine Poly(ε-caprolactone), Macromolecules, 25, 4242CrossRefGoogle Scholar
  41. 41.
    Stassen, S., Archambeau, S., Dubois, P., Jérome, R., and Teyssié, P., Macromolecular Engineering of Polyesters and Polylactones XVI. On the Way to the Synthesis of w-Aliphatic Primary Amine Poly(ε-caprolactone) and Polylactides. 1994, J. Pol. Sci.: A: Pol. Chem., 32: 2443CrossRefGoogle Scholar
  42. 42.
    Gotsche, M., Keul, H., and Höcker, H., Amino-Terminated poly(L-lactide) as Initiators for the Polymerization of N-carboxyanhydrides: Synthesis of Poly(L-lactide)-blockPoly(α-Amino Acid). 1995, Macromol. Chem. Phys., 196: 3891CrossRefGoogle Scholar
  43. 43.
    Sosnowski, S., Slomkowski, S., Penczek, S., and Florjanczyk, Z., Telechelic Poly(ε — caprolactone Terminated at Both Ends with OH Groups and its Derivatization. 1991, Makromol. Chem., 192: 1457CrossRefGoogle Scholar
  44. 44.
    Dubois, P., Zhang, J.X., Jérôme, R., and Teyssié, P., Macromolecular Engineering of Polyesters and Polylactones: 13. Synthesis of Telechelic Polyesters by Coupling Reactions. 1994, Polymer, 35: 4998CrossRefGoogle Scholar
  45. 45.
    Dong, T., Dubois, P., Jérôme, R., and Teyssié, P., 1994, Macromolecular Engineering of Polylactones and Polylactides. 18. Synthesis of Star-Branched Aliphatic Polyesters Bearing Various Functional End Groups. Macromolecules, 27: 4134CrossRefGoogle Scholar
  46. 46.
    Mecerreyes, D., P., Jérôme, R., and Dubois, P., Novel Macromolecular Architectures Based on Aliphatic Polyesters: Relevance of the “Coordination-Insertion” Ring-Opening Polymerization. 1999, Advances in Polymer Science, 147: 1CrossRefGoogle Scholar
  47. 47.
    McLain, S.J., and Drysdale, N.E., 1991, U.S. Patent, No. 5.028.667Google Scholar
  48. 48.
    Stevels, W.M., Ankoné, M.J.K., Dijkstra, P.J., and Feijen, J., 1996, Kinetics and Mechanism of ε-Caprolactone Polymerization Using Yttrium Alkoxides as Initiators, Macromolecules, 29: 8296CrossRefGoogle Scholar
  49. 49.
    Martin, E., Dubois, P., and Jerome, R., 2000, Controlled Ring-Opening Polymerization of ε-Caprolactone Promoted by “in Situ” Formed Yttrium Alkoxides, Macromolecules, 33: 1530CrossRefGoogle Scholar
  50. 50.
    Kricheldorf, H.R., Berl, M., and Scharnagl, N., 1988, Poly(lactones). 9. Polymerization Mechanism of Metal Alkoxide Initiated Polymerizations of Lactide and Various Lactones. Macromolecules, 21: 286CrossRefGoogle Scholar
  51. 51.
    Barakat, I., Dubois, P., Jérome, R., and Teyssié, P., 1991, Living Polymerization and Selective End Functionalization of ε-Caprolactone using Zinc Alkoxides as Initiators. Macromolecules 24: 6542CrossRefGoogle Scholar
  52. 52.
    Okuda, J., and Rushkin, I.L., 1993, Mono(cyclopentadienyl)titanium Complexes as Initiators for the Living Ring-Opening Polymerization of ε-Caprolactone. Macromolecules 26: 5530CrossRefGoogle Scholar
  53. 53.
    Okuda, J., Konig, P., Rushkin, I.L., Kang, H-.C., and Massa, W., 1995, Indenyl effect in dO-transition metal complexes: synthesis, molecular structure and lactone polymerization activity of (Ti(h5-C9H7)Cl2(OMe)). J. Organomet. Chem. 501: 37CrossRefGoogle Scholar
  54. 54.
    Mukaiyama, M., Hayakawa, M., Oouchi, K., Mitani, M., and Yamada, T., Preparation of Narrow Polydispersity Polycaprolactone Catalyzed by Cationic Zirconocene Complexes. 1995, Chem. Lett. 737: ppGoogle Scholar
  55. 55.
    Kricheldorf, H.R., and Lee, S-.R., Polylactones 32. High-Molecular-Weight Polylactides by Ring-Opening Polymerization with Dibutyl Magnesium or Butylmagnesium Chloride. 1995, Polymer 36: 2995CrossRefGoogle Scholar
  56. 56.
    Chisholm, M.H., and Eilerts, N.W., Single Site Metal Alkoxide Catalysts for RingOpening Polymerizations. Poly(dilactide) Synthesis Employing (HB93-Butpz)3)Mg(Oet). 1996, J. Chem. Soc., Chem. Commun. 853Google Scholar
  57. 57.
    Wood, R. J., Suter, P.M., and Russell, R.M., 1995, Mineral requirements of elderly people. Am. J. Clin. Nutr. 62: 493Google Scholar
  58. 58.
    Turnlund, J.R., Betschart, A.A., Liebman, M., Kretsch, M.J., and Sauberlich, H.E., 1992, Vitamin B-6 depletion followed by repletion with animal- or plant-source diets and calcium and magnesium metabolism in young women. Am. J. Clin. Nutr. 56: 905Google Scholar
  59. 59.
    Koo, W.W.K., and Tsang, R C., 1991, Mineral Requirements Of Low-Birth-Weight Infants. J. Am. Coll. Nutr. 10: 474Google Scholar
  60. 60.
    Li, S.M., Rashkov, I., Espartero, J.L., Manolova, N., and Vert, M., 1996, Synthesis, Characterization, and Hydrolytic Degradation of PLA-PEO-PLA Triblock Copolymers with Long Poly(L-lactic acid) Blocks, Macromolecules 29: 57CrossRefGoogle Scholar
  61. 61.
    Dobrzynski, P., Kasperczyk, J., and Bero, M., 1999, Application of Calcium Acetylacetonate to the Polymerization of Glycolide and Copolymerization of Glycolide with e Caprolactone and L Lactide, Macromolecules 32: 4735CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Pieter J. Dijkstra
    • 1
  • Zhiyuan Zhong
    • 1
  • Wim M. Stevels
    • 1
  • Jan Feijen
    • 1
  1. 1.Department of Chemical Technology and Institute of Biomedical TechnologyUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations