Polyhydroxyalkanoates Production by Activated Sludge

  • Luísa S. Serafim
  • Paulo C. Lemos
  • João G. Crespo
  • Ana M. Ramos
  • Maria A. M. Reis
Chapter

Abstract

Polyhydroxyalkanoates (PHA) are intracellular polymers stored by many bacterial species. Presently PHA are industrially produced by pure cultures fermentation where high quality substrates are used. Mixed cultuires using raw substrates are able to produce PHA when submitted to transient conditions like oscillations on substrate feeding or on oxygen supply. The yield on PHA produced by activated sludge submitted to these dynamic conditions reach values comparable to those obtained .by the pure cultures, being the first process less cost intensive than the last one. The chain length of the polymer produced in both processes is similar.

Keywords

Activate Sludge Oxygen Uptake Rate Nile Blue Enhanced Biological Phosphorus Removal Biological Phosphorus Removal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, A. J. and Dawes, E. A., 1990, Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev., 54: 450–472.Google Scholar
  2. 2.
    Page, W. and Cornish, A., 1993, Growth of Azotobacer vinelandii uwd in fish peptone medium and simplified extraction of poly-ß-hydroxybutyrate. Appl. Environ. Microbiol. 59: 4236–4244.Google Scholar
  3. 3.
    Lemos, P. C., Viana, C., Salgueiro, E. N., Ramos, A. M., Crespo, J. P. S. G. and Reis, M. A. M., 1998, Effect of carbon source on the formation of polyhydroxyalkanoates (PHA) by a phosphate-accumulating mixed culture. Enzyme and Microb. Technol. 22: 662–671.CrossRefGoogle Scholar
  4. 4.
    Van Loosdrecht, M. C. M., Pot, M. A. and Heijen, J. J., 1997, Importance of bacterial storage polymers in bioprocesses. Wat. Sci. Technol. 35: 41–47.Google Scholar
  5. 5.
    Pereira, H., Lemos, P. C., Carrondo, M. J. T., Crespo, J. P. S. G., Reis, M. A. M. and Santos, H., 1996, Model for carbon metabolism in biological phosphorus removal processes based on in vivo 13C-NMR labelling experiments. Water Res. 30: 2128–2138.CrossRefGoogle Scholar
  6. 6.
    Mino, T., Liu, W. T., Satoh, H. and Matsuo, T., 1996, Possible metabolisms of polyphosphate accumulating (PAOs) and glycogen accumulating non-poly-P organisms (GAOs) in the enhanced biological phosphate removal process. Med. Fac. Landbouww. Univ. Gent. 61: 1769–1775.Google Scholar
  7. 7.
    Wentzel, M. C., Lotter, L. H., Ekama, G. A., Loewenthal, R. E. and Marais, G. V., 1991, Evaluation of biochemical models for biological excess phosphorus removal. Wat. Sci. Technol. 23: 567–576.Google Scholar
  8. 8.
    Satoh, H., Mino, T. and Matsuo, T., 1992, Uptake of organic substrates and accumulation of polyhydroxyalkanoates linked with glycolysis of intracellular carbohydrates under anaerobic conditions in the biological excess phosphate removal processes. Wat. Sci. Technol., 26: 933–942.Google Scholar
  9. 9.
    Rees, G. N., Vasilidis, G., May, J. W. and Bayly, R. C., 1992, Differentiation of polyphosphate and poly-ß-hydroxybutyrate granules in an Acinetobacter sp. isolated from activated sludge. Lett. Appl. Micro., 25: 63–69.Google Scholar
  10. 10.
    Satoh, H., Iwamoto, Y., Mino, T. and Matsuo, T., 1998, Activated sludge as a possible source of biodegradable plastic. Wat. Sci. Technol., 38: 103–109.Google Scholar
  11. 11.
    Lee, S. Y., 1996, Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng., 49: 1–14.CrossRefGoogle Scholar
  12. 12.
    Akiyama, M., Taima, Y. and Doi, Y., 1992, Production of poly(3-hydroxyalkanoates) by a bacterium of the genus Alcaligenes utilising long-chain fatty acids. Appl. Microbiol. Biotechnol., 37: 698–701.CrossRefGoogle Scholar
  13. 13.
    Shimizu, H., Tamura, S., Shioya, S. and Suga, K., 1993, Kinetic study of poly-D(-)-3-hydroxybutyric acid (PHB) production and its molecular weight distribution control in a fed-batch culture of Alcaligenes eutrophus. J. Ferment. Bioeng., 76: 465–469.CrossRefGoogle Scholar
  14. 14.
    Taidi, B., Mansfield, D. and Anderson, A., 1995, Turnover of poly(3-hydroxybutyrate) (PHB) and its influence on the molecular mass of the polymer accumulated by Alcaligenes eutrophus during batch culture. FEMS Microbiol. Lett., 120: 201–206.Google Scholar
  15. 15.
    Taidi, B., Anderson, A. J., Dawes, E. A. and Byron, D., 1994, Effect of carbon source and concentration on the molecular mass of poly(3-hydroxybutyrate) produced by Methylobacterium extorquens and Alcaligenes eutrophus. Appl. Environ. Microbiol., 40: 786–790.Google Scholar
  16. 16.
    Hiramitsu, M., Koyama, N. and Doi, Y., 1993, Production of poly(3-hydroxybutyrare-co-4-hydroxybutyrate) by Alcaligenes latus. Biotechnol. Lett., 15: 461–464.CrossRefGoogle Scholar
  17. 17.
    Chen, G. and Page, W., 1994, The effect of substrate on the molecular weight of poly-ß-hydroxybutyrate produced by Azotobacter vinelandii uwd. Biotechnol. Lett. 16: 155–160.CrossRefGoogle Scholar
  18. 18.
    Daniel, M., Choi, J., Kim, J. and Lebeault, J., 1992, Effect of nutrient deficiency on accumulation and relative molecular weight of poly-ß-hydroxybutyric acid by methylotrophic bacterium, Pseudomonas 135. Appl. Microbiol. Biothecnol., 37: 702–706.Google Scholar
  19. 19.
    Young, F., Kastner, J. and May, S., 1994, Microbial production of PHB from D-xylose and lactose by Pseudomonas cepacia. Appl. Environ. Microbiol., 60: 4195–4198.Google Scholar
  20. 20.
    Anderson, A., Williams, D., Taidi, B., Dawes, E. and Ewing, D., 1992, Studies on copolyester synthesis by Rhodococus ruber and factors influencing the molecular mass of polyhydroxybutyrate accumulated by methylobacterium extorquens and Alcaligenes eutrophus. FEMS Microbiol. Rev., 103: 93–102.CrossRefGoogle Scholar
  21. 21.
    Beccari, M., Majone, M., Ramadori, R. and Tozzi, G., 1997, Biodegradable polymers from wastewater treatment by using selected mixed cultures. XII Convegno Div. Chim. Ind. E Cruppu Interdiv. Catalisi, SCI, Giarden, Italy, 22–25 July .Google Scholar
  22. 22.
    Majone, M., Dircks, K. and Beun, J. J., 1999, Aerobic storage under dynamic conditions in activated sludge processes. The state of the art. Wat. Sci. Technol., 39: 61–73.CrossRefGoogle Scholar
  23. 23.
    Majone, M., Massanisso, P. and Ramadori, R., 1998, Comparison of carbon storage under aerobic and anoxic conditions. Wat. Sci. Technol., 38: 77–84.Google Scholar
  24. 24.
    Majone, M., Massanisso, P., Carucci, A., Lindrea, K. and Tandoi, V., 1996, Influence of storage on kinetic selection to control aerobic filamentous bulking. Wat. Sci. Technol., 34: 223–232.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Luísa S. Serafim
    • 1
  • Paulo C. Lemos
    • 1
  • João G. Crespo
    • 1
  • Ana M. Ramos
    • 1
  • Maria A. M. Reis
    • 1
  1. 1.Departamento de Química — CQFB, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal

Personalised recommendations