Advertisement

The Late Maunder Minimum (1675–1715) — Climax of the ‘Little Ice Age’ in Europe

  • Jürg Luterbacher
Chapter

Abstract

The Maunder Minimum (MM; 1645–1715) delineates the coldest phase of the so-called ‘Little Ice Age’ (LIA; variously assessed as ~AD 1300 to 1900; Holzhauser, 1997; Pfister et al., 1998; Wanner et al., 2000) with marked climatic variability over wide parts of Europe. This period coincides with an enhanced volcanic (Briffa et al., 1998) and a reduced solar activity, as well as a low number of sunspots (Spörer, 1887; Maunder, 1922; Eddy, 1976) and an increase in atmospheric 14C (Stuiver and Braziunas, 1993). Estimates of the total radiative solar output changes for the MM are in the order of 0.2 to 0.4% relative to present levels (Hoyt and Schatten, 1993; Nesmes-Ribes et al., 1993; Lean et al., 1995; Reid, 1997; Lean and Rind, 1998; 1999). Solar activity during the MM was near its lowest levels within the past 8000 years (Lean and Rind, 1999) and the UV (200–300 nm) irradiance was also lower (Lean et al., 1995). This in turn could have had an influence on stratospheric chemistry (ozone) and dynamics (absorption). The reduced solar activity might have resulted in a decrease of the stratospheric ozone content as proposed by Wuebbles et al. (1998). In agreement with this proposal, levels of δ14C and δ10Be cosmogenic isotopes in tree-rings and ice cores were found to be elevated (Eddy, 1976; Stuiver and Braziunas, 1993). However, several authors (i.e. Landsberg, 1980; Cullen, 1980; Xu et al., 2000) believe that a decline in solar activity may not have been the cause of the climate severity during the LMM, since evidence from numerous local histories, especially from east Asia, suggest that sunspots were not rare in the seventeenth century. Mann et al. (1998) have found lower annual Northern Hemisphere (NH) mean surface temperatures with decreases between 0.2° and 0.4°C compared to the reference period of 1902-1980. Jones et al. (1998) report of a decrease of the NH April to September temperatures in the order of around 0.3°–0.6°C compared to the reference period of 1961–1990. However, there is no evidence of an advance of European alpine glaciers. The Great Aletsch and the Lower Grindelwald Glaciers show a series of years with a nearly stable or even a negative mass balance (Wanner et al., 2000).

Keywords

Solar Activity Atmospheric Circulation Canonical Correlation Analysis British Isle Maunder Minimum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcoforado, M.J., Nunes, M.F., Garcia, J.C., and Taborda J.P., 2000, Temperature and precipitation reconstructions in southern Portugal during the Late Maunder Minimum (1675 to 1715), The Holocene 10, in press.Google Scholar
  2. Banzon, V., de Franceschi, G, and Gregori, G.P., 1992, The mathematical handling and analysis of non homogeneous and incomplete multivariate historical data series, in: European Climate Reconstructed from Documentary Data: methods and results, B. Frenzel, C. Pfister, eds., ESF, Stuttgart, 137–151.Google Scholar
  3. Barnett, T., and Preisendorfer, R., 1987, Origins and levels of monthly and seasonal forecasts skill for United States surface air temperature determined by Canonical Correlation Analysis, Mon. Wea. Rev. 115: 1825–1850.CrossRefGoogle Scholar
  4. Barriendos, M., 1997, Climatic variations in the Iberian peninsula during the Late Maunder Minimum (AD 1675–1715): An analysis of data from rogation ceremonies, The Holocene 7: 105–111.CrossRefGoogle Scholar
  5. Beer, J., Mende, W., and Stellmacher, R., 2000, The role of the sun in climate forcing, Quat. Sci. Rev. 19: 403–415.CrossRefGoogle Scholar
  6. Bertrand, C., van Ypersele J.-P., and Berger, A., 1999, Volcanic and solar impacts on climate since 1700, Clim. Dyn. 15: 355–367.CrossRefGoogle Scholar
  7. Blair, D., 1998, The Kirchhofer technique of synoptic typing revisited, Int. J. Climatol. 18: 1625–1635.CrossRefGoogle Scholar
  8. Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., de Menocal, P., Priore, P., Cullen, H., Hajdas, I., and Bonani, B., 1997, A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates, Science 278: 1257–1266.CrossRefGoogle Scholar
  9. Borisenkov, Y.P., 1994, Climatic and other natural extremes in the European territory of Russia in the Late Maunder Minimum (1675–1715), in: Climatic Trends and Anomalies in Europe 1675–1715, B. Frenzel, C. Pfister, and B. Glaeser B., eds., Gustav Fischer Verlag, Stuttgart, Jena, New York, 83–94.Google Scholar
  10. Boroneant, C., and Chiper, M., 1998, Climatic anomalies in Romanian territory compared to the climate of Europe in the years of Maunder Minimum (1675–1715), Second International Climate and History Conference, Norwich, U.K., September 1998, p. 7.Google Scholar
  11. Brazdil, R, Dobrovolny, P., Chocholdc, B., and Munzar, J. 1994, Climatic and other natural extremes in the European territory of Russia in the Late Maunder Minimum (1675–1715), in: Climatic Trends and Anomalies in Europe 1675–1715, B. Frenzel, C. Pfister, and B. Glaeser B., eds., Gustav Fischer Verlag, Stuttgart, Jena, New York, 83–94.Google Scholar
  12. Briffa, K.R., Jones, P.D., Schweingruber F.H., and Osborn, T.J., 1998, Influence of volcanic eruptions on northern hemisphere summer temperature over the past 600 years, Nature 393: 450–455.CrossRefGoogle Scholar
  13. Brown, G.M., and Johns, J.I., 1979, Solar cycle influences in tropospheric circulation, J . Atmos. Terr. Phys. 41: 43–52.CrossRefGoogle Scholar
  14. Crowley, T.J., and Kim, K.-Y., 1999, Modeling the temperature response to forced climate change over the past six centuries, Geophys. Res. Lett. 26: 1901–1904.CrossRefGoogle Scholar
  15. Cullen, C., 1980, Was there a Maunder Minimum? Nature 283: 427–428.CrossRefGoogle Scholar
  16. D’Arrigo, R.D., Jacoby, G.C., Free, M., and Robock, A., 1999, Northern hemisphere temperature variability for the past three centuries: tree-ring and model estimates, Clim. Change 42: 663–675.CrossRefGoogle Scholar
  17. Dickson, R.R., Meincke, J., Malmberg, S.-A., and Lee, A. J., 1988, The “Great Salinity Anomaly” in the northern North Atlantic 1968–1982, Prog. in Oceanogr. 20:103–151.Google Scholar
  18. Eddy, J.A., 1976, The Maunder Minimum, Science 192: 1189–1202.CrossRefGoogle Scholar
  19. Etheridge, D.M., Steele, L.P., Francey, R.J., and Langenfelds, R., 1998, Atmospheric methane between 1000 AD and present: evidence for anthropogenic emissions and climate variability, J. Geophys. Res. 103: 15979.CrossRefGoogle Scholar
  20. Free, M., and Robock, A., 1999, Global warming in the context of the Little Ice Age, J. Geophys. Res. 104: 19057–19070.CrossRefGoogle Scholar
  21. Frydendahl, K., Frich, P., and Hansen, C., 1992, Danish weather observations 1675–1715 (DMI Technical Report 92–3, Danish Meteorological Institute (DMI), Denmark-2100 Copenhagen, p. 23.Google Scholar
  22. Glaser, R., Brazdil, R, Pfister, C., Dobrovoln9, P., Barriendos Vallve, M., Bokwa, A., Camuffo, D., Kotyza, O., Limanówka, D., Racz, L., and Rodrigo, F.S., 1999, Seasonal temperature and precipitation fluctuations in selected parts of Europe during the sixteenth century, Clim. Change 43: 169–200.CrossRefGoogle Scholar
  23. Haigh, J.D., 1994, The role of stratospheric ozone in modulating the solar radiative forcing of climate, Nature 370: 544–546.CrossRefGoogle Scholar
  24. Haigh, J.D., 1996, The impact of solar variability on climate, Science 272: 981–984.CrossRefGoogle Scholar
  25. Harrington, C.D. (ed.), 1992, The Year without a Summer. Word Climate in 1816, Canadian Museum of Nature, Ottawa, 576 pp.Google Scholar
  26. Heino, R., Brazdil, R., FOrland, E., Tuomenvirta, H., Alexandersson, H., Beniston, M., Pfister, C., Rebetez, M., Rosenhagen, G., Rösner, S., and Wibig, J., 1999, Progress in the study of climatic extremes in northern and central Europe, Clim. Change 42: 151: 181.Google Scholar
  27. Holzhauser, H.P., 1997, Fluctuations of the grosser Aletsch glacier and the Gorner glacier during the last 3200 years: new results, in: Paläoklimaforschung/Paleoclimate Research 24: 35–58.Google Scholar
  28. Hoyt, D.V., and Schatten, K.H., 1993, A discussion of plausible solar irradiance variations, 1700–1992, J. Geophys. Res. 98: 18895–18906.CrossRefGoogle Scholar
  29. Hurrell, J.W., 1995, Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation, Science 269: 676–679.CrossRefGoogle Scholar
  30. Hurrell, J.W., and van Loon, H., 1997, Decadal variations in climate associated with the North Atlantic Oscillation. Clim. Change 36: 301–326.CrossRefGoogle Scholar
  31. Huth, R., 1996, An intercomparison of computer-assisted circulation classification methods, Int. J. Climatol. 16: 893–922.CrossRefGoogle Scholar
  32. Hyde, W.T., and Crowley, T.J., 2000, Probability of future climatically significant volcanic eruptions. J. Climate (Letters) 13: 1445–1450.CrossRefGoogle Scholar
  33. Jones, P.D., Briffa, K.R., and Schweingruber, F.H., 1995, Tree-ring evidence of the widespread effects of explosive volcanic eruptions, Geophys. Res. Lett. 22: 1333–1336.CrossRefGoogle Scholar
  34. Jones, P.D., Briffa, K.R., Barnett, T.P., and Tett, S.F.B., 1998, High-resolution palaeoclimatic records for the last millennium: interpretation, integration and comparison with general circulation model control-run temperatures, The Holocene 8: 455–471.CrossRefGoogle Scholar
  35. Jones, P.D., Davies, T.D., Lister, D.H., Slonosky, V., Jónsson, T., Barring, L., Jönsson P., Maheras, P., Kolyva-Machera, F., Barriendos, M., Martin-Vide, J., Rodriguez, R., Alcoforado, M.J., Wanner, H., Pfister, C., Rickli, R., Luterbacher, J., Schüpbach, E., Kaas, E., Schmith, T., Jacobeit, J., and Beck, C., 1999, Monthly mean pressure reconstruction for Europe for the 1780 — 1995 period, Int. J. Climatol. 19: 347–364.CrossRefGoogle Scholar
  36. Kaufmann, R.K., Snell, S.E., Gopal, S., and Dezzani, R., 1999, The significance of synoptic patterns identified by the Kirchhofer technique: A Monte Carlo approach, Int. J. Climatol. 19: 619–626.CrossRefGoogle Scholar
  37. Kington, J., 1995, The severe winter of 1694/95, Weather 50: 160–163.CrossRefGoogle Scholar
  38. Kington, J., 1997, The severe winter of 1696/97, Weather 52: 386–391.CrossRefGoogle Scholar
  39. Kington, J., 1999, The severe winter of 1697/98, Weather 54: 43–49.CrossRefGoogle Scholar
  40. Koslowski, G., and Glaser, R., 1995, Reconstruction of the ice winter severity since 1701 in the western Baltic, Clim. Change 31: 79–98.CrossRefGoogle Scholar
  41. Koslowski, G., and Glaser, R., 1999, Variations in reconstructed ice winter severity in the western Baltic from 1501 to 1995, and their implications for the North Atlantic Oscillation, Clim. Change 41: 175–191.CrossRefGoogle Scholar
  42. Kushnir, Y., 1994, Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions, J. Climate 7: 142–157.CrossRefGoogle Scholar
  43. Kushnir, Y., and Held, I.M., 1996, Equilibrium atmospheric response to North Atlantic SST anomalies’, J. Climate 9: 1208–1220.CrossRefGoogle Scholar
  44. Lachiver, M., 1991, Les Années de Misère, Fayard, Paris.Google Scholar
  45. Lamb, H.H., 1979, Climatic variations and changes in the wind and ocean circulation. The Little Ice Age in the northeast Atlantic, Quaternary Res. 11: 1–20.CrossRefGoogle Scholar
  46. Lamb, H.H., 1982, Climate, History and the Modern World, Methuen and Co Ltd., London.Google Scholar
  47. Landsberg, H.E., 1980, Variable solar emissions, the Maunder Minimum and climatic temperature fluctuations, Arch. Meteor. Geophys. Bioklim. B28: 181.CrossRefGoogle Scholar
  48. Lean, J., and Rind, D., 1998, Climate Forcing by Changing Solar Radiation, J. Climate 11: 3069–3094.CrossRefGoogle Scholar
  49. Lean, J., and Rind, D., 1999, Evaluating sun-climate relationships since the little ice age, J. Atmos. Sol.-Terr. Phys. 61: 25–36.CrossRefGoogle Scholar
  50. Lean, J., Beer, J. and Bradley, R.S., 1995, Reconstruction of solar irradiance since 1610: Implications for climate change, Geophys. Res. Leu. 22: 3195–3198.CrossRefGoogle Scholar
  51. Legrand, J.-P., and Le Goff, M., 1992, Les observations météorologiques de Louis Morin entre I670 et 1713, in: Direction de la Météorologie Nationale, Monographie Nr. 6, Météo-France, Trappes.Google Scholar
  52. Luterbacher, J., Schmutz, C., Gyalistras, D., Xoplaki, E., and Wanner, H., 1999, Reconstruction of monthly NAO and EU indices back to 1675, Geophy. Res. Lett. 26: 2745–2748.CrossRefGoogle Scholar
  53. Luterbacher, J., and 33 co-authors: 2000a, Reconstruction of monthly mean pressure over Europe for the Late Maunder Minimum period (1675–1715) based on canonical correlation analysis’, Int. J. Climatol., in press.Google Scholar
  54. Luterbacher, J., Rickli, R., Xoplaki, E., Tinguely, C. Beck, C., Pfister, C., and Wanner, H., 2000b, The Late Maunder Minimum (1675–1715) — a key period for studying decadal scale climatic change in Europe. Clim. Change, in press.Google Scholar
  55. Lyakhov, M., 1987, Years with extreme climatic conditions, in: Data of Meteorological Studies No. 13. Institute of Geography, Academy of Sciences of the USSR: Moscow (in Russian), 119–178.Google Scholar
  56. Manley, G., 1974, Central England temperatures: monthly means 1659 to 1973, Quart. J. Roy. Met. Soc. 100: 389–405.CrossRefGoogle Scholar
  57. Mann, M.E., Bradley, R.S., and Hughes, M.K., 1998, Global-scale temperature patterns and climate forcing over the past six centuries, Nature 392: 779–787.CrossRefGoogle Scholar
  58. Maunder, E.W., 1922, The prolonged sunspot minimum 1675–1715, Brit. Astron. Ass. J. 32: 140–145.Google Scholar
  59. NCAR, 1997, Trenberth’s northern hemispheric sea level pressure, 5°x5°, monthly. DSS/D/DS010.I dataset, Boulder, Colorado.Google Scholar
  60. Nesmes-Ribes, E., Ferreira, E.N., Sadourny, R., Le Treut, H., and Li, Z.X., 1993, Solar dynamics and its impact on solar irradiance and the terrestrial climate, J. Geophys. Res. 98: 18923–18935.CrossRefGoogle Scholar
  61. Ogilvie, A.E.J., 1996, Sea ice conditions off the coasts Iceland AD 1601–1850 with special reference to part of the Maunder Minimum period (1675–1715), AmS-Varia 25, Archaeological Museum of Stavanger, Norway, 9–12.Google Scholar
  62. Parker, D.E., Legg, T.P., and Folland, C.K., 1992, A new daily central England temperature series, 1772–1991, Int. J. Climatal. 12: 317–342.CrossRefGoogle Scholar
  63. Peng, S., and Mysak, L.A, 1993, A teleconnection study of interannual sea surface temperature fluctuations in the North Atlantic and precipitation and runoff over western Siberia, J. Climate 6: 876–885.CrossRefGoogle Scholar
  64. Pfister, C., 1994, Spatial patterns of climatic change in Europe 1675–1715, in: Climatic Trends and Anomalies in Europe 1675–1715, B. Frenzel, C. Pfister, and B. Glaeser B, eds., Gustav Fischer Verlag, Stuttgart, Jena, New York, 287–317.Google Scholar
  65. Pfister, C., 1999, Wetternachhersage. 500 Jahre Klimavariationen und Naturkatastrophen 1496–1995, Paul Haupt Verlag, Bern, Stuttgart, Wien.Google Scholar
  66. Pfister, C., Kington, J., Kleinlogel, G., Schäle, H. and Siffert, E., 1994, High resolution spatio-temporal reconstructions of past climate from direct meteorological observations and proxy data, in: Climatic Trends and Anomalies in Europe 1675–1715, B. Frenzel, C. Pfister, and B. Glaeser B., eds., Gustav Fischer Verlag, Stuttgart, Jena, New York, 329–376.Google Scholar
  67. Pfister, C., Luterbacher, J., Schwarz-Zanetti, G., and Wegmann, M., 1998, Winter air temperature variations in western Europe during the early and high middle ages (AD 750–1300), The Holocene 8: 535–552.CrossRefGoogle Scholar
  68. Racz, L., 1999, Climate History of Hungary since 16th Century: Past, Present and Future, Pécs, p. 160. Zoltan Gal, Pécs.Google Scholar
  69. Reid, G.C., 1997, Solar forcing of global climate change since the mid-17th century, Clim. Change 37: 391–405.CrossRefGoogle Scholar
  70. Reverdin, G., Cayan, D.R., and Kushnir, Y., 1997, Decadal variability of hydrography in the upper northern North Atlantic, 1948–1990, J. Geophys. Res. 102: 8505–8532.CrossRefGoogle Scholar
  71. Rind, D., and Overpeck, J., 1993, Hypothesised causes of decade-to-century climate variability: climate model results, Quat. Sci. Rev. 12: 357–374.CrossRefGoogle Scholar
  72. Rind, D., Lean, J., and Healy, R., 1999, Simulated time-dependent climate response to solar radiative forcing since 1600’, J. Geophys. Res. 104: 1973–1990.CrossRefGoogle Scholar
  73. Robock, A., 1994: Review of year without a summer? World climate in 1816. Clim. Change 26: 105–108.CrossRefGoogle Scholar
  74. Robock, A., 2000: Volcanic eruptions and climate, Rev. Geophys. 38: 191–219.CrossRefGoogle Scholar
  75. Robock, A., and Free, M.P., 1995, Ice cores as an index of global volcanism from 1850 to the present, J. Geophys. Res. 100: 11549–11567.CrossRefGoogle Scholar
  76. Robock, A., and Mao, J., 1995, The volcanic signal in surface temperature observations, J. Climate 8: 1086–1103.CrossRefGoogle Scholar
  77. Schmutz, C., and Wanner, H., 1998, Low frequency variability of atmospheric circulation over Europe, Erdkunde (Earth Science) 52: 81–94.CrossRefGoogle Scholar
  78. Shindell, D., Rind, D., Balachandran, N., Lean, J., and Lonergan, P., 1999, Solar Cycle variability, Ozone, and Climate, Science 284: 305–308.CrossRefGoogle Scholar
  79. Spörer, F.W.G., 1887, Über die Periodizität der Sonnenflecken seit dem Jahre 1618, vornehmlich in Bezug auf die heliographische Breite derselben, and Hinweis auf eine erhebliche Störung dieser Periodizität während eines langen Zeitraumes, Vjschr. Astron. Ges. Leipzig 22: 323–329.Google Scholar
  80. Stuiver, M., and Braziunas, T.F., 1993, Sun, ocean, climate and atmospheric 14CO2: An evaluation of causal and spectral relationships, The Holocene 3: 289–305.CrossRefGoogle Scholar
  81. Tinsley, B.A., 1988, ‘The solar cycle and the QBO influences on the latitude of storm track in the North Atlantic, Geophys. Res. Lett. 15: 409–412.Google Scholar
  82. Trudinger, C.M., Enting, I.G., Francey, R.J., and Etheridge, D.M., 1999, Long-term variability in the global carbon cycle inferred from a high-precision CO2 and S13C ice-core record, Tellus 51B: 233–248.Google Scholar
  83. von Storch, H., and F.W. Zwiers, 1999, Statistical Analysis in Climate Research, Cambridge University Press, London.Google Scholar
  84. Wanner, H., Pfister, C., Brazdil, R., Frich, P., Frydendahl, K., Jónsson, T., Kington, J., Rosenorn, S., and Wishman, E., 1995, Wintertime European circulation patterns during the Late Maunder Minimum cooling period (1675–1704), Theor. Appl. Climatol. 51: 167–175.CrossRefGoogle Scholar
  85. Wanner, H., Holzhauser, HP., Pfister, C., and Zumbühl, H., 2000, Interannual to century scale climate variability in the European Alps. Erdkunde (Earth Science) 54: 62–69.CrossRefGoogle Scholar
  86. Wuebbles, D.J., Wei, C-F., and Patten, K.O., 1998, Effects on stratospheric ozone and temperature during the maunder minimum, Geophys. Res. Lett. 25: 523–526.CrossRefGoogle Scholar
  87. Xoplaki, E., Maheras, P., and Luterbacher, J., 2000, Variability of climate in meridional Balkans during the periods 1675–1715 and 1780–1830 and its impact on human life. Clim. Change,in press.Google Scholar
  88. Xu, Z.T. et al., 2000, East Asian Astronomical Observations (East Asian Archaeoastronomy: Astronomical Observations in East Asia Historical Records, Gordon and Breach,in press.Google Scholar
  89. Yarnal, B., 1993, Synoptic Climatology in Environment Analysis. A Primer. Belhaven Press, London, Florida.Google Scholar
  90. Yarnal, B., and Frakes, B., 1997;, A procedure for blending manual and correlation-based synoptic classification, Int. J. Climatol. 17: 1381–1396.Google Scholar
  91. Zielinski, G.A., 1995, Stratospheric loading and optical depth estimated of explosive volcanism over the last 2100 years derived from the Greenland ice sheet project 2 ice core, J. Geophys. Res. 100: 20937–20955.CrossRefGoogle Scholar
  92. Zielinski, G.A., 2000, Use of paleo-records in determining variability within the volcanism-climate system, Quat. Sci. Rev. 19: 417–438.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Jürg Luterbacher
    • 1
  1. 1.Institute of Geography, Climatology and MeteorologyUniversity of BernBernSwitzerland

Personalised recommendations