A User’s Guide to the Laplace Transform

  • Richard Ghez


This chapter provides a compact, self-contained introduction to the Laplace transform, a powerful technique that can be applied with ease to a wide variety of time-dependent problems. Rather than strive for the greatest generality, this introduction addresses only those simplest properties that are most useful for the solution of diffusion problems. Only elementary methods of calculus are used, and integration in the complex plane is avoided altogether. It follows that questions regarding analyticity, the inversion integral, and asymptotic behavior cannot be completely answered, although some such properties will be demonstrated.N1


Diffusion Equation Image Space Original Function Image Function Laplace Transform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. R. Spiegel, Theory and Problems of Laplace Transforms (Schaum Publishing Co., New York, 1965).Google Scholar
  2. 2.
    R. V. Churchill, Operational Mathematics, 3rd ed. (McGraw-Hill, New York, 1972).zbMATHGoogle Scholar
  3. 3.
    G. Doetsch, Introduction to the Theory and Application of the Laplace Transform (Springer-Verlag, Berlin, 1974).CrossRefzbMATHGoogle Scholar
  4. 4.
    C. J. Tranter, Integral Transforms in Mathematical Physics, 3rd ed. (Methuen & Co. , Ltd, London, 1966).zbMATHGoogle Scholar
  5. 5.
    L. A. Pipes, “The Summation of Fourier Series by Operational Methods, ” J. Appl Phys. 21, 298 (1950).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    R. B. Hetnarski, “An Algorithm for Generating some Inverse Laplace Transforms of Exponential Type, ” Z. angew. Math. Phys. (ZAMP) 26, 249 (1975).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    F. T. Lindstrom and F. Oberhettinger, “A Note on a Laplace Transform Pair Associated with Mass Transport in Porous Media and Heat Transport Problems, ” SIAM J. Appl. Math. 29, 288 (1975).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    K. S. Crump, “Numerical Inversion of Laplace Transforms Using a Fourier Series Approximation, ” J. Assoc. Comput. Mach. 23, 89 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    P. Puri and P. K. Kythe, “Some Inverse Laplace Transforms of Exponential Type, ” Z. angew. Math. Phys. (ZAMP) 39, 150 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 9a.
    P. Puri and P. K. Kythe, “Some Inverse Laplace Transforms of Exponential Type, ” Z. angew. Math. Phys. (ZAMP) 39, 954 (1988).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 10.
    D. V. Widder, The Laplace Transform (Princeton University Press, Princeton, NJ, 1941).zbMATHGoogle Scholar
  12. 11.
    A. Erdélyi, Asymptotic Expansions (reprinted by Dover, New York, 1956).zbMATHGoogle Scholar
  13. 12.
    A. Erdélyi, “General Asymptotic Expansions of Laplace Integrals, ” Arch. Rational Mech. Anal. 7, 1 (1961).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 13.
    G. Doetsch, Handbuch der Laplace-Transformation, Band II (Birkhäuser-Verlag, Basel, 1972).CrossRefzbMATHGoogle Scholar
  15. 14.
    R. A. Handelsman and J. S. Lew, “Asymptotic Expansion of Laplace Convolutions for Large Argument and Tail Densities for certain Sums of Random Variables, ” SIAM J. Math. Anal. 5, 425 (1974).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 15.
    A. Erdélyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Tables of Integral Transforms, Vol. 1 (McGraw-Hill, New York, 1954).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Richard Ghez

There are no affiliations available

Personalised recommendations