Output Stages

  • Johan Huijsing
Part of the The Kluwer International Series in Engineering and Computer Science book series (SECS, volume 605)

Abstract

The output stage of an operational amplifier has to provide the load impedance Z L with the desired output voltage V 0 and current I 0 , resulting in an output power P 0 = V 0 I 0 . The main requirements of the output stage are: the ability to deliver negative and positive output currents at a high current efficiency, an output voltage range that efficiently utilizes the range between the negative supply rail voltage and the positive one, a high power efficiency, a low distortion, and good high-frequency (HF) performance.

Keywords

Supply Voltage Operational Amplifier Output Stage Current Gain Voltage Follower 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [5.1]
    Solomon, J.E., “The monolithic op amp: a tutorial study” IEEE Journal of Solid-State Circuits, Vol. SC-91, Dec. 1974, pp. 314–332.CrossRefGoogle Scholar
  2. [5.2]
    Gray, P.R., and Meyer, R.G. “Analyses and Design of Analog Integrated Circuits” John Wiley and Sons, New York, 1984.Google Scholar
  3. [5.3]
    Fullager, D. “A new high performance monolithic operational amplifier” Fairchild Semiconductor, Application Briefing, May 1968, (μA 741).Google Scholar
  4. [5.4]
    Nishikawa, Y., and Solomon, J.E. “A general-purpose wideband operational amplifier” IEEE ISSCC 73, Digest of Technical Papers, pp. 144, 145, 212, 213.Google Scholar
  5. [5.5]
    Data Sheet, “LH-0021 operational amplifier” National Semiconductor, April 1972.Google Scholar
  6. [5.6]
    Long, F. L. “A dual monolithic power operational amplifier” IEEE ISSCC 1973, Digest of Technical Papers, pp. 178, 179, 221.Google Scholar
  7. [5.7]
    Shade, O.H. Jr. “A new generation of MOS/Bipolar operational amplifiers” RCA review, Vol. 37, Sept. 1976, pp. 204–224.Google Scholar
  8. [5.8]
    Widlar, R.J. “Monolithic op amp with simplified frequency compensation” IEEE, Vol. 15, July 1967, pp. 58–63.Google Scholar
  9. [5.9]
    Senderowicz, D., Hodges, D.A., and Gray, P.R. “High performance N-MOS operational amplifier” IEEE Journal of Solid-State Circuits, Vol. SC-13, Dec. 1978, pp. 760–766.CrossRefGoogle Scholar
  10. [5.10]
    Renirie, W.C.M., Langen, K.J. de, and Huijsing, J.H. “Parallel feedforward class-AB control circuits for low-voltage bipolar rail-to-rail output stages of operational amplifiers” Analog Integrated Circuits and Signal Processing, No. 8, 1995, pp. 37–48.CrossRefGoogle Scholar
  11. [5.11]
    Montecelli, D.M. “A quad CMOS single-supply op amp with rail-to-rail output swing” IEEE Journal of Solid-State Circuits, Vol. SC-21, Dec. 1986, pp. 1026–1034.CrossRefGoogle Scholar
  12. [5.12]
    Hogervorst, R., Tero, J.P., Eschauzier, R.G.H., and Huijsing, J.H. “A compact power-efficient 3V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries” IEEE Journal of Solid-State Circuits, Vol. 29, No. 12, Dec. 1994, pp. 1505–1513.CrossRefGoogle Scholar
  13. [5.13]
    Gray, P. R. “A 15-W monolithic power operational amplifier” IEEE Journal of Solid-State Circuits, Vol. SC-7, Dec. 1972, pp. 478–480.Google Scholar
  14. [5.14]
    Huijsing, J.H., and Tol, F. “Monolithic operational amplifier design with improved HF behaviour” IEEE Journal of Solid-State Circuits, Vol. SC-11, April 1976, pp. 323–328.CrossRefGoogle Scholar
  15. [5.15]
    Seevinck, E., et al “A low-distortion output stage with improved stability for monolithic power amplifiers” IEEE Journal of Solid-State Circuits, Vol. 23, No. 3, June 1988, pp. 794–801.CrossRefGoogle Scholar
  16. [5.16]
    Huijsing, J.H. and Linebarger, D. “Low-voltage operational amplifier with rail-to-rail input and output ranges” IEEE Journal of Solid-State Circuits, Vol. SC-20, Dec. 1985, pp. 1144–1150.Google Scholar
  17. [5.17]
    Fonderie, J., Huijsing, J.H. “Operational amplifier with I-V rail-to-rail multipath-driven output stage” IEEE Journal of Solid-State Circuits, Vol. 26, No. 12, Dec. 1991, pp. 1817–1824.CrossRefGoogle Scholar
  18. [5.18]
    Hogervorst, R., and al. “CMOS low-voltage operational amplifiers with constant-gm rail-to-rail input stage” Analog Integrated Circuits and Signal Processing, No. 5, 1994, pp. 135–146.CrossRefGoogle Scholar
  19. [5.19]
    Eschauzier, R.G.H., Hogervorst, R., and Huijsing, J.H. “A programmable 1.5 V CMOS class-AB operational amplifier with hybrid-nested Miller compensation for 120 dB gain and 6 MHz UGF” IEEE Journal of Solid-State Circuits, Vol. 29, No. 12, Dec. 1994, pp. 1497–1504.CrossRefGoogle Scholar
  20. [5.20]
    Langen, K.J. de, and Huijsing, J.H. “Compact low-voltage power-efficient operational amplifier cells for VLSI”. Journal of Solid-State Circuits, Vol. 33, No. 10, Oct. 1998, pp.Google Scholar
  21. [5.21]
    Getreu, I. “Modelling the bipolar transistor” Tektronix, inc., Beaverton, Oregon, USA, 1976.Google Scholar
  22. [5.22]
    Langen, K.J. de, Fonderie, J., and Huijsing, J.H. “Limiting Circuits for Rail-to-Rail Output Stages of Low- Voltage Bipolar Operational Amplifiers” ISCAS 95, Seattle, Vol. 3, pp. 1728–1731.Google Scholar
  23. [5.23]
    Langen, K.J. de, Huijsing, J.H. “High-frequency and low-voltage Bipolar, BiCMOS, and CMOS operational amplifier techniques” Kluwer Academic Publishers, Boston, 1999.Sorting Out the Effects of Switzerland’s Accession to the Eu: A Simulation AnalysisGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Johan Huijsing
    • 1
  1. 1.Delft University of TechnologyThe Netherlands

Personalised recommendations