Skip to main content

Scanning Probe Arrays for Lithography

  • Chapter
  • 232 Accesses

Part of the book series: Microsystems ((MICT,volume 7))

Abstract

In Chapter 6 we demonstrated dramatic improvements in the writing speed of a single tip, yet patterning throughput is still too low to make SPL a viable large-scale patterning technology. For example, a writing speed of 10 mm/s and a pixel size of 100 nm correspond to a pixel rate of 100 kHz (kilopixels per second). An exposure field measuring 1 cm × 1 cm contains 1010 pixels. If we raster scanned the tip over every pixel in the exposure field, it would take 105 seconds or about one day to cover the region. For comparison, today’s deep ultraviolet (DUV) steppers pattern about 40 200-mm-diameter wafers per hour. Each wafer contains more than 200 1 cm × 1 cm exposure fields.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. C. Minne, J. D. Adams, G. Yaralioglu, S. R. Manalis, A. Atalar, and C. F. Quate, “Centimeter-scale atomic force microscope imaging and lithography,” Appl. Phys. Lett. 73, 1741–1744 (1998).

    Article  Google Scholar 

  2. A. J. Peyton and V. Walsh, Analog Electronics With Op Amps ( New York: Cambridge University Press, 1993 ).

    Google Scholar 

  3. S. C. Minne, “Increasing the throughput of atomic force microscopy,” Ph.D. Thesis, Stanford University, 1996.

    Google Scholar 

  4. S. C. Minne S. R. Manalis, and C. F. Quate, “Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators,” Appl. Phys. Lett. 67, 3918 (1995).

    Article  Google Scholar 

  5. S. C. Minne, S. R. Manalis, A. Atalar and C. F. Quate, “Independent parallel lithography using the atomic force microscope,” J. Vac. Sci. Technol. B 14, 2458 (1996).

    Article  Google Scholar 

  6. M. Lutwyche, C. Andreoli, G. Binnig, J. Brugger, U. Drechsler, W. Haeberle, H. Rohrer, H. Rothuizen, and P. Vettiger, “Microfabrication and parallel operation of 5x5 2D AFM cantilever arrays for data storage and imaging,” Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. (Cat. No.98CH36176), 8 (1998).

    Google Scholar 

  7. International Technology Roadmap for Semiconductors (San Jose: Semiconductor Industry Association, 1997). Data reflect 1998 update to the roadmap.

    Google Scholar 

  8. K. Bean, “Anisotropic etching of silicon”, IEEE Trans.Electron Devices ED-25, 1187 (1978).

    Google Scholar 

  9. O. Tabata, R. Asahi, H. Funabashi, K. Shimaoka, and S. Sugiyama, “Anisotripic etching of silicon in TMAH solutions,” Sensors and Actuators A 34, 51 (1992).

    Article  Google Scholar 

  10. E. M. Chow, H. T. Soh, A. Partridge, J. A. Harley, T. W. Kenny and C. F. Quate, “Fabrication of high density cantilever arrays and through-wafer connections,” Proc. Solid State Sensors and Actuator Workshop, Hilton Head Island, South Carolina (6–11 June), 220, (1998).

    Google Scholar 

  11. C. Christensen, P. Kersten, S. Henke and S. Bouwstra, “Wafer through-hole interconnections with high vertical wiring densities,” IEEE Transactions on Components, Packaging, and Manufacturing Technology 19, 516 (1996).

    Article  Google Scholar 

  12. P. Kersten, S. Bouwstra and J. W. Petersen, “Photolithography on micromachined 3D surfaces using electrodeposited photoresists,” Sensors and Actuators A (Physical). A51, 51 (1995).

    Article  Google Scholar 

  13. M. Tortonese, H. Yamada, R. C. Barrett, and C. F. Quate, “Atomic force microscopy using a piezoresistive cantilever,” Proceedings of the 6th International Conference on Solid-State Sensors and Actuators (Transducers ‘81) 91, 448 (1991).

    Article  Google Scholar 

  14. M. Tortonese, “Force sensors for scanning probe microscopy,” Ph.D. Thesis, Ginzton Laboratory Number 5098, Stanford University, June 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Soh, H.T., Guarini, K.W., Quate, C.F. (2001). Scanning Probe Arrays for Lithography. In: Scanning Probe Lithography. Microsystems, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3331-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3331-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4894-6

  • Online ISBN: 978-1-4757-3331-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics