Skip to main content

SPL Linewidth Control

  • Chapter
Scanning Probe Lithography

Part of the book series: Microsystems ((MICT,volume 7))

  • 229 Accesses

Abstract

The current-controlled scanning probe lithography (SPL) systems that we developed (described in Chapter 3) can reliably pattern uniform features in organic resists with dimensions below 100 nm. In this chapter, we compare electron exposures made by SPL to those made by electron beam lithography (EBL). This comparison highlights the advantages and limitations of a low-energy electron lithography technique such as SPL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. International Technology Roadmap for Semiconductors (San Jose: Semiconductor Industry Association, 1997). Data also reflects 1998 update to the roadmap.

    Google Scholar 

  2. A. N. Broers, “Electron and ion probes,” Proc. Symp. Electron Ion Beam Sci. Technol., 3–5 (1972).

    Google Scholar 

  3. A. N. Broers, “A new high resolution electron probe,” J. Vac. Sci. Technol. 10, 979–982 (1973).

    Article  Google Scholar 

  4. M. Hatzakis, “Fundamental aspects of electron beam exposure of polymer resists systems,” J. Electrochem. Soc. 121, 106C (1974).

    Google Scholar 

  5. P. Rai-Choudhury, ed, Handbook of Microlithography, Micromachining, and Microfabrication: Volume 1 ( Bellingham, Wash: SPIE Optical Engineering Press, 1997 ).

    Google Scholar 

  6. F. K. Perkins, E. A. Dobisz, and C. R. K. Marrian, “Determination of acid diffusion rate in a chemically amplified resist with scanning tunnelling microscope lithography,” J. Vac. Sci. Technol. B 11, 2597–2602 (1993).

    Article  Google Scholar 

  7. A. Tritchkov, R. Jonckheere, and L. Van den Hove, “Use of positive and negative chemically amplified resists in electron-beam direct-write lithography,” J. Vac. Sci. Technol. B 13, 6, 2986–2993 (1995).

    Article  Google Scholar 

  8. K. Murata and D. F. Kyser, “Monte Carlo methods and microlithography simulation for electron and X-Ray beams,” Advances in Electronics and Electron Physics 69, 175–259 (1987).

    Article  Google Scholar 

  9. J. S. Greeneich, “Electron-beam processes,” in G. R. Brewer, ed., Electron-Beam Technology in Microelectronic Fabrication ( New York: Academic Press, 1980 ).

    Google Scholar 

  10. N. Li, I. Kawamoto, T. Yoshinobu, and H. Iwasaki, “Experimental measurement of the profile of the field-emitted electron beam from a scanning tunneling microscope tip,” unpublished, 1999.

    Google Scholar 

  11. ] W. M. Moreau, Semiconductor Lithography: Principles, Practices, and Materials (New York: Plenum Press,1988).

    Google Scholar 

  12. T. Waas, H. Eisenmann, O Völlinger, and H. Hartmann, “Proximity correction for high CD accuracy and process tolerance,” Microelectron. Eng. 27, 179–182 (1995).

    Article  Google Scholar 

  13. G. Owen and P. Rissman, “Proximity effect correction for electron beam lithography by equalization of background dose,” J. Appl. Phys. 54, 3573–3581 (1983).

    Article  Google Scholar 

  14. N. Belic, H. Eisenmann, H. Hartmann, and T. Wass, “Geometrical correction of the e-beam proximity effect for raster scan systems,” Proc. SPIE 3676 (1999).

    Google Scholar 

  15. M. A. McCord, “Electron beam lithography for 0.13 µm manufacturing,” J. Vac. Sci. Technol. B 15, 2125–2129 (1997).

    Google Scholar 

  16. T. J. Stark, T. M. Mayer, D. P. Griffis, and P. E. Russell, “Effects of electron energy in nanometer scale lithography,” Proc. SPIE 1924, 126–140 (1993).

    Article  Google Scholar 

  17. T. H. P. Chang, M. G. R. Thomson, E. Kratschner, H. S. Kim, M. L. Yu, K. Y. Lee, S. A. Rishton, B. W. Hussey, and S. Zolgharmain, “Electron beam microcolumns for nanolithography,” Proc. of the Internat. Conf. on Quantum Devices and Circuits, 3–15 (1997).

    Google Scholar 

  18. C. Stebler, M. Despont, U. Staufer, T. H. P. Chang, K. Y. Lee, and S. A. Rishton, “Microcolumn-based low energy e-beam writing,” Microelectron. Eng. 30, 45–48 (1996).

    Article  Google Scholar 

  19. Y.-H. Lee, R. Browning, and R. F. W. Pease, “E-beam lithography at low voltages,” Proc. SPIE 1671, 155–165 (1992).

    Article  Google Scholar 

  20. C. W. Lo, M. J. Rooks, W. K. Lo, M. Isaacson, and H. G. Craighead, “Resists and processes for 1 kV electron beam microcolumn lithography,” J. Vac. Sci. Technol. B 13, 3, 812–820 (1995).

    Article  Google Scholar 

  21. F. Murai, S. Okazaki, N. Saito, and M. Dan, “The effect of acceleration voltage on line width control with a variable-shaped electron beam system,” J. Vac. Sci. Technol. B 5, 105–109 (1987).

    Article  Google Scholar 

  22. D. Tully, A. Trimble, and J. M. J. Fréchet, Department of Chemistry, University of California, Berkeley, California, private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Soh, H.T., Guarini, K.W., Quate, C.F. (2001). SPL Linewidth Control. In: Scanning Probe Lithography. Microsystems, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3331-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3331-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4894-6

  • Online ISBN: 978-1-4757-3331-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics