SPL Linewidth Control

  • Hyongsok T. Soh
  • Kathryn Wilder Guarini
  • Calvin F. Quate
Part of the Microsystems book series (MICT, volume 7)


The current-controlled scanning probe lithography (SPL) systems that we developed (described in Chapter 3) can reliably pattern uniform features in organic resists with dimensions below 100 nm. In this chapter, we compare electron exposures made by SPL to those made by electron beam lithography (EBL). This comparison highlights the advantages and limitations of a low-energy electron lithography technique such as SPL.


Line Width Proximity Effect Electron Beam Lithography Energy Density Distribution Pixel Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    International Technology Roadmap for Semiconductors (San Jose: Semiconductor Industry Association, 1997). Data also reflects 1998 update to the roadmap.Google Scholar
  2. [2]
    A. N. Broers, “Electron and ion probes,” Proc. Symp. Electron Ion Beam Sci. Technol., 3–5 (1972).Google Scholar
  3. [3]
    A. N. Broers, “A new high resolution electron probe,” J. Vac. Sci. Technol. 10, 979–982 (1973).CrossRefGoogle Scholar
  4. [4]
    M. Hatzakis, “Fundamental aspects of electron beam exposure of polymer resists systems,” J. Electrochem. Soc. 121, 106C (1974).Google Scholar
  5. [5]
    P. Rai-Choudhury, ed, Handbook of Microlithography, Micromachining, and Microfabrication: Volume 1 ( Bellingham, Wash: SPIE Optical Engineering Press, 1997 ).Google Scholar
  6. [6]
    F. K. Perkins, E. A. Dobisz, and C. R. K. Marrian, “Determination of acid diffusion rate in a chemically amplified resist with scanning tunnelling microscope lithography,” J. Vac. Sci. Technol. B 11, 2597–2602 (1993).CrossRefGoogle Scholar
  7. [7]
    A. Tritchkov, R. Jonckheere, and L. Van den Hove, “Use of positive and negative chemically amplified resists in electron-beam direct-write lithography,” J. Vac. Sci. Technol. B 13, 6, 2986–2993 (1995).CrossRefGoogle Scholar
  8. [8]
    K. Murata and D. F. Kyser, “Monte Carlo methods and microlithography simulation for electron and X-Ray beams,” Advances in Electronics and Electron Physics 69, 175–259 (1987).CrossRefGoogle Scholar
  9. [9]
    J. S. Greeneich, “Electron-beam processes,” in G. R. Brewer, ed., Electron-Beam Technology in Microelectronic Fabrication ( New York: Academic Press, 1980 ).Google Scholar
  10. [10]
    N. Li, I. Kawamoto, T. Yoshinobu, and H. Iwasaki, “Experimental measurement of the profile of the field-emitted electron beam from a scanning tunneling microscope tip,” unpublished, 1999.Google Scholar
  11. [1.
    ] W. M. Moreau, Semiconductor Lithography: Principles, Practices, and Materials (New York: Plenum Press,1988).Google Scholar
  12. [12]
    T. Waas, H. Eisenmann, O Völlinger, and H. Hartmann, “Proximity correction for high CD accuracy and process tolerance,” Microelectron. Eng. 27, 179–182 (1995).CrossRefGoogle Scholar
  13. [13]
    G. Owen and P. Rissman, “Proximity effect correction for electron beam lithography by equalization of background dose,” J. Appl. Phys. 54, 3573–3581 (1983).CrossRefGoogle Scholar
  14. [14]
    N. Belic, H. Eisenmann, H. Hartmann, and T. Wass, “Geometrical correction of the e-beam proximity effect for raster scan systems,” Proc. SPIE 3676 (1999).Google Scholar
  15. [15]
    M. A. McCord, “Electron beam lithography for 0.13 µm manufacturing,” J. Vac. Sci. Technol. B 15, 2125–2129 (1997).Google Scholar
  16. [ 16]
    T. J. Stark, T. M. Mayer, D. P. Griffis, and P. E. Russell, “Effects of electron energy in nanometer scale lithography,” Proc. SPIE 1924, 126–140 (1993).CrossRefGoogle Scholar
  17. [17]
    T. H. P. Chang, M. G. R. Thomson, E. Kratschner, H. S. Kim, M. L. Yu, K. Y. Lee, S. A. Rishton, B. W. Hussey, and S. Zolgharmain, “Electron beam microcolumns for nanolithography,” Proc. of the Internat. Conf. on Quantum Devices and Circuits, 3–15 (1997).Google Scholar
  18. [18]
    C. Stebler, M. Despont, U. Staufer, T. H. P. Chang, K. Y. Lee, and S. A. Rishton, “Microcolumn-based low energy e-beam writing,” Microelectron. Eng. 30, 45–48 (1996).CrossRefGoogle Scholar
  19. [19]
    Y.-H. Lee, R. Browning, and R. F. W. Pease, “E-beam lithography at low voltages,” Proc. SPIE 1671, 155–165 (1992).CrossRefGoogle Scholar
  20. [20]
    C. W. Lo, M. J. Rooks, W. K. Lo, M. Isaacson, and H. G. Craighead, “Resists and processes for 1 kV electron beam microcolumn lithography,” J. Vac. Sci. Technol. B 13, 3, 812–820 (1995).CrossRefGoogle Scholar
  21. [21]
    F. Murai, S. Okazaki, N. Saito, and M. Dan, “The effect of acceleration voltage on line width control with a variable-shaped electron beam system,” J. Vac. Sci. Technol. B 5, 105–109 (1987).CrossRefGoogle Scholar
  22. [22]
    D. Tully, A. Trimble, and J. M. J. Fréchet, Department of Chemistry, University of California, Berkeley, California, private communication.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Hyongsok T. Soh
    • 1
  • Kathryn Wilder Guarini
    • 1
  • Calvin F. Quate
    • 1
  1. 1.Stanford UniversityStanfordUSA

Personalised recommendations