Silicon-Germanium Heterojunction Bipolar Transistor

  • John D. Cressler
Chapter

Abstract

Silicon (Si) bipolar transistor technology, despite its desirable features of fast switching speed, high transconductance, and excellent current-drive capability at room temperature (RT = 300 K), is often viewed as unsuitable for the cryogenic environment because its current gain (β = Jc/JB), frequency response, and circuit speed typically degrade strongly with cooling [1,2]. Recent evidence [3–6] indicates, however, that careful profile design can be used to achieve respectable Si bipolar performance down to liquid-nitrogen temperature (LNT = 77 K). Even with these improvements, however, it is unlikely that conventionally designed Si bipolar technology will offer performance attractive enough to make it a serious contender to CMOS, a proven technology for cryogenic applications.

Keywords

Cryogenic Temperature Current Gain Heterojunction Bipolar Transistor SiGe Alloy SiGe Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Kauffman, W. L., and Bergh, A. A., IEEE Trans. on Electron Devices 15 (1968) 732.CrossRefGoogle Scholar
  2. [2]
    Dumke, W. P., IEEE Trans. on Electron Devices 28 (1981) 494.CrossRefGoogle Scholar
  3. [3]
    Woo, J. C. S. et al., IEEE Trans. Electron Devices 35 (1988) 1311.CrossRefGoogle Scholar
  4. [4]
    Stork, J. M. C. et al., IEEE Trans. Electron Devices 36 (1989) 1503.CrossRefGoogle Scholar
  5. [5]
    Yano, K. et al., IEEE Electron Device Letters 10 (1989) 452.CrossRefGoogle Scholar
  6. [6]
    Cressler, J. D. et al., IEEE Trans. on Electron Devices 36 (1989) 1489.CrossRefGoogle Scholar
  7. [7]
    Crabbé, E. F. et al., Tech. Digest of the IEDM (1990) 17.Google Scholar
  8. [8]
    Cressler, J. D., Proc. of the European Solid State Device Research Conf. (1992) 841.Google Scholar
  9. [9]
    Cressler, J. D. et al., IEEE Trans. on Electron Devices 40 (1993) 525.CrossRefGoogle Scholar
  10. [10]
    Cressler, J. D. et al., IEEE Trans. on Electron Devices 40 (1993) 542.CrossRefGoogle Scholar
  11. [11]
    Cressler, J. D. et al., Tech. Digest of the Symposium on VLSI Technology (1992) 102.Google Scholar
  12. [12]
    Cressler, J. D., et al., IEEE Electron Device Letters 15 (1994) 472.CrossRefGoogle Scholar
  13. [13]
    Matthews, J. W. et al., Journal of Crystal Growth 27 (1974) 118.Google Scholar
  14. [14]
    People, R., IEEE Journal of Quantum Electronics 22 (1986) 1696.CrossRefGoogle Scholar
  15. [15]
    Meyerson, B. S., Proceedings of the IEEE 80 (1992) 1592.CrossRefGoogle Scholar
  16. [16]
    Meyerson, B. S., Applied Physics Letters 48 (1986) 797.CrossRefGoogle Scholar
  17. [17]
    Iyer, S. et al., Tech. Digest of the IEDM (1987) 874.Google Scholar
  18. [18]
    Patton, G. L., IEEE Electron Device Letters 11 (1990) 171.CrossRefGoogle Scholar
  19. [19]
    Comfort, J. H. et al., in Tech. Digest of the IEDM (1990) 21.Google Scholar
  20. [20]
    Harame, D. L. et al., Tech. Digest of the IEDM (1992) 19.Google Scholar
  21. [21]
    Crabbé, E. F. et al., Tech. Digest of the IEDM (1993) 83.Google Scholar
  22. [22]
    Kasper, E. et al., Tech. Digest of the IEDM (1993) 79.Google Scholar
  23. [23]
    Cressler, J. D., IEEE Trans. on Microwave Theory and Techniques 46 (1998) 572.CrossRefGoogle Scholar
  24. [24]
    Harame, D. L. et al., IEEE Transactions on Electron Devices 42 (1995) 455.CrossRefGoogle Scholar
  25. [25]
    Harame, D. L. et al., IEEE Transactions on Electron Devices 42 (1995) 469.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • John D. Cressler
    • 1
  1. 1.Alabama Microelectronics Science and Technology Center Electrical and Computer Engineering DepartementAuburn UniversityUSA

Personalised recommendations