Skip to main content

Minimax Theorems for Locally Lipschitz Functionals and Applications

  • Chapter

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 52))

Abstract

The purpose of this chapter is to present several variants of minimization and mountain-pass theorems for nondifferentiable functionals. We assume that the given functionals are locally Lipschitz so that their generalized gradients can be defined (cf. Clarke [Cl] ). A general critical point theory for locally Lipschitz functionals was developed by K. C. Chang [Ch1], extending the concept of a critical point, the Palais—Smale condition and the deformation lemma. Critical point results have also been obtained in other nondifferentiable settings. We refer to Degiovanni & Marzocchi [DM], Corvellec, Degiovanni & Marzocchi [CDM] for the case of continuous functionals and to Ribarska, Tsachev & Krastanov [RTK1], Ioffe & Schwartzman [IS] for the case of discontinuous functionals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Adly S, Goeleven D. Periodic solutions for a class of hemivariational inequalities. Comm. Appl. Nonl. Anal., 1995; 2:45–57.

    MathSciNet  MATH  Google Scholar 

  2. Adly S, Goeleven D. Homoclinic orbits for a class of hemivariational inequalities. Applicable Analysis, 1995; 58:229–240.

    Article  MathSciNet  MATH  Google Scholar 

  3. Aubin, Jean-Pierre. L ’analyse Non Linéaire et ses Motivations Economique. Paris: Masson, 1984.

    Google Scholar 

  4. Aubin, Jean-Pierre and Ekeland, Ivar. Applied Nonlinear Analysis. N.Y.: John Wiley amp; Sons, 1984.

    MATH  Google Scholar 

  5. Brezis H, Nirenberg L. Remarks on finding critical points. Comm. Pure Appl. Math., 1991;XLIV:939–963.

    Article  MathSciNet  Google Scholar 

  6. Caklovic L, Li S, Willem M. A note on Palais-Smale condition and coercivity. Diff. Int. Eq., 1990;3:799–800

    MathSciNet  MATH  Google Scholar 

  7. Chabrowski, Jan. Variational Methods for Potential Equations: with Applications to Nonlinear Elliptic Equations. Berlin: de Gruyter, 1997.

    Book  MATH  Google Scholar 

  8. Chang KC. Variational methods for non-differentiable functionals and their applications to PDE. J. Math. Anal. Appl., 1981;80:102–129.

    Article  MathSciNet  MATH  Google Scholar 

  9. Clarke, Frank. Optimization and Nonsmooth Analysis. N.Y.: John Wiley & Sons, 1983.

    MATH  Google Scholar 

  10. Corvellec JN, Degiovanni M, Marzocchi M. Deformation properties for continuous functionals and critical point theory. Topol. Methods Nonlin. Anal. 1993;1:151-.

    MathSciNet  MATH  Google Scholar 

  11. Costa DG, Gonçalves JVA. Critical point theory for nondifferentiable functionals and applications. J. Math. Anal. Appl., 1990;153:470–485.

    Article  MathSciNet  MATH  Google Scholar 

  12. Degiovanni M., Marzocchi M., A critical point theory for nonsmooth functionals, Ann. Mat. Pura Appl., 1994;167:73–100.

    Article  MathSciNet  MATH  Google Scholar 

  13. Ekeland, Ivar. Convexiy Methods in Hamiltoniam Mechanics. N.Y.: Springer-Verlag, 1990.

    Book  Google Scholar 

  14. Ghoussoub N, Preiss D. A general mountain pass principle for locating and classifying critical points. Ann. Inst. Henri Poincaré, 1989;6,5:321–330.

    MathSciNet  MATH  Google Scholar 

  15. Grossinho MR, Tersian S. Critical point theory for locally Lipschitz functionals and applications to fourth order problems. Proceedings of XXVIII-th Spring Conference of U.B.M., Sofia, 1999:99–106.

    Google Scholar 

  16. Ioffe A., Schwartzman E., Metric critical point theory, 1. Morse regularity and homotopic stability of a minimum. J. Math. Pures Appl., 1996;75:125–153.

    MathSciNet  MATH  Google Scholar 

  17. Ribarska N., Tsachev T. and Krastanov M. The intrinsic mountain pass principle. C. R. Acad. Sci. Paris, Ser I, 1999;329:350–358.

    MathSciNet  Google Scholar 

  18. Ribarska N., Tsachev T. and Krastanov M. Deformation Lemma, Ljusternik-Schnirelmann Theory and Mountain Pass theorem on C1-Finsler Manifolds. Serdica Math. J., 1991;21:239–266.

    MathSciNet  Google Scholar 

  19. Ribarska N., Tsachev T. and Krastanov M. On the general mountain pass principle of Ghoussoub-Preiss. Mathematica Balkanika (N.S.), 1991;5:399–404.

    MathSciNet  Google Scholar 

  20. Panagiotopoulos, Panagiotis. Hemivariational Inequalities. Applications in Mechanics and Engineering. Berlin: Springer-Verlag, 1993.

    Book  MATH  Google Scholar 

  21. Panagiotopoulos PD. Nonconvex energy function, hemivariational inequalities and substationary principles. Acta Mech. 1983;48:160–183.

    Article  MathSciNet  Google Scholar 

  22. Panagiotopoulos PD. Coercive and semicoercive hemivariational inequalities. Nonlinear Anal., 1991;16:209–231.

    Article  MathSciNet  MATH  Google Scholar 

  23. Willem M. Lecture notes on critical point theory, Fundação Universidade de Brasília, 199, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

do Rosário Grossinho, M., Tersian, S.A. (2001). Minimax Theorems for Locally Lipschitz Functionals and Applications. In: An Introduction to Minimax Theorems and Their Applications to Differential Equations. Nonconvex Optimization and Its Applications, vol 52. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3308-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3308-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4849-6

  • Online ISBN: 978-1-4757-3308-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics